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GENERAL INTRODUCTION 

Importance of Studies of Metal Oxidation 

The interaction of gases with solid surfaces has been a subject of 

a wide range of studies. If the solid has single crystal structure and 

terminates at the surface with long-range, 2-dimensional periodicity, the 

interaction between adsorbate and substrate can result in ordered adlayer 

and/or sublayer structures, which can be studied with the fast developing 

techniques of surface science. This dissertation is aimed at studying the 

conditions necessary for formation of the ordered surface and subsurface 

structures when the surface is exposed to gas particles. The system 

oxygen/Ni(ICQ) is chosen for the investigation of the formation and change 

of surface and subsurface structures when oxygen exposure and substrate 

temperature are varied, or when adsorbed surfaces are annealed to higher 

temperatures. Two well-known surface science techniques, AES (Auger 

electron spectroscopy) and LEED (low-energy electron diffraction), are 

employed in this study. AES is used to check the surface cleanliness 

before each measurement, to correlate the oxidation onset with the 

observations from LEED, and to help identify differences between the 

electronic states and binding energies of different oxide epitaxies. LEED 

is used to quantitatively monitor changes in ordered structures, during 

adsorption and annealing, by following the changes in the integrated spot 

intensities or spot profiles. 
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Metal oxidation is a reaction between a solid and a gas. It 

Involves the combination of oxygen with metals, and it has the greatest 

commercial Impact in the presence of moisture, as in corrosion. The 

importance in studying the metal oxidation has been realized for a long 

time. For example, Cabrera and Mott have studied the formation of oxide 

films in the surface region on many metals, including Ni, in 1949 [i]. 

The metal nickel is often used as an electroplate or as a component In 

alloys to Improve the corrosion resistance of other metals. Nickel is 

also widely used in catalysis, mainly in hydrogénation reactions. 

Its catalytic property can be influenced by the presence of oxygen. 

Some poisoning [2] or promoting [1] effects In catalytic reactions have 

been observed when Og traces are present in the gaseous reaction mixture. 

Moreover, recent results have shown that the presence of partially 

oxidized metallic phases modifies the adsorptive properties of nickel 

catalysts [4,$]. Nickel oxide is also an Important component of a number 

of oxidation catalysts [$]. Consequently, studies of the nickel-oxygen 

system may give useful Information. In order to gain a detailed atomic-

and molecular-scale knowledge of the phenomenon, it Is obviously desirable 

to carry out experiments on well-defined nickel surfaces (single 

crystals). 

Previous Studies of 0/Ni(100) 

Surface studies of the adsorption of oxygen on the nickel surface can 

be traced back to the time of the historical discovery of electron 
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diffraction by Davisson and Germer in 1925 [%]. That accidental exposure 

of Og to Ni surface established the theoretical base for the future 

invention of modern LEED technique, although it did not lay much ground 

for the study of nickel oxidation. The modern surface studies of 

0/Ni(100} system started at about the same time as surface science started 

to quickly develop. It is one of the most thoroughly studied systems in 

surface science. As a result, many facts are reasonably well-established. 

The first of 0/Ni(100) was done by MacRae [8], who studied all three low-

index faces -(100), (111) and (110)- with LEED. In that work he 

identified the chemisorption structures of 0/Ni(100), denoted p(2x2)-b and 

c(2x2)-0. The two structures have ideal coverages of 0.25 and 0.50 

monolayers, respectively. (One monolayer, 0 • 1, is here defined as one 

adsorbed particle per metal atom in the Ni(100) surface.) It is generally 

agreed now that in each structure, oxygen atoms reside in or near the 

four-fold hollow sites, and the oxygen-surface distance is 0.8 to 0.9 A 

[9-181. although the most recent work by Chubb et al. reduces this value 

to 0.75 A with a full-potential, spin-polarized, total-energy calculation 

on the Ni(100)-c(2x2)-0 system [19]. The formation of p(2x2) structure is 

accompanied by a +2% expansion between the top two Ni layers, and the 

c(2x2) is accompanied by a larger relaxation of +5% [10,11], which has 

been increased to +5.7% by the most recent study [19]. ( These 

relaxations are quoted as percentages of the spacing between (100) and 

(200) planes in bulk Ni.) The phase diagram of the chemisorption 

structures, p(2x2) and c(2x2), has been partially mapped out by Taylor and 

Park [2Q]. The adsorption kinetics are very temperature-dependent, and 



www.manaraa.com

4 

can not be reconciled with a simple second-order Langmuir isotherm [3,21, 

££]. Brundle and coworkers have suggested that the kinetics at room 

temperature are dominated by an adsorption-site-ensemble requirement, and 

the kinetics at low temperatures (ca. 150 K or below) are dominated by a 

mobile (molecular) precursor [3,21,2%]. 

Nickel oxidizes quite readily, and so exposure to oxygen eventually 

causes oxidation of the near-surface region. The classic study of this 

phenomenon is that by Holloway and Hudson. They studied the oxide 

structures that form at coverages beyond that of the c(2x2), using LEED, 

AES and work function measurements [£â]. Since that report, many others 

have contributed to the pool of available information. 

As far as the thickness of the nickel oxide is concerned, 

there is usually agreement that the oxide which forms between 80 and 400 

K is two or three layers deep, whereas the oxide is deeper when formed at 

or above about 500 K [9.23-271. However, report of other depth also 

exists, Evans et al. reported that a 18 A deep (about 9 ML) oxide layer 

forms at 300- 370 K [28]. The onset of oxidation occurs at a coverage 

reported by most authors as 0.35 to 0.45 monolayers r9.23-26.291. i.e., 

well before the ideal coverage of the c(2x2) layer, 0.50 monolayers, is 

reached. The onset of oxidation usually follows a plateau in the 

coverage-exposure relationship (effectively, an induction period), whose 

length varies directly with temperature r9.23-26.291. 

The oxide which forms is generally thought to be NiO, although there 

are also reports of NijOj [28,30] and NijO [31], which have not been 

discussed seriously in the literature. However, the epitaxial 
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orientation of NiO on Ni(100) has been a topic of disagreement. Wagner 

and Moylan observed only NiO(lOO) [3£]> On the other hand, Holloway and 

Hudson in their classic study [23], as well as Mitchell et al. [M]» 

reported that the (100) and (111) orientations develop together. Later 

studies confirmed the existence of these two epitaxies of NiO on Ni(100) 

[26,22,33]. One common feature of almost all these studies is that the 

structures are obtained by oxidation at room temperature [21,24,12,33], 

although there have been some work also at higher temperatures [21,M]. 

The problem of these studies, at one temperature or a narrow range, is 

that they did not see the whole picture of this system. 

Some authors have also tried to draw a mechanism about this process, 

from chemisorption to oxidation [10,21]• It was suggested that the 

process is divided into three stages: chemisorption, slow induction 

(presumably nucleation) period and fast oxidation (lateral growth of 

nucleation sites until they coalesce and form a saturated, homogeneous 

nickel oxide layer). However, this mechanism is only phenomenological. 

It did not give any insight of the energetic factors that govern the 

competition and formation of different oxide structures during the 

oxidation stage. 

Finally, quite recently, there has been a report of a (7x7) 

structure, interpreted as a strained form of NiO(lOO) [31]. 
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Overview of Thesis Work 

In the first chapter, the temperature- and exposure-dependence of 

surface structures which form prior to, and during, oxidation of Ni(100) 

is described. As in many other studies. Auger electron spectroscopy is 

used as a measure of relative coverage, and as an independent measure of 

the point at which oxidation begins during adsorption. In the second 

chapter, discussions on the (7x7) structure are further extended. More 

data on the peculiar behavior of the (7x7) are presented. Three possible 

models are discussed in order to find one that could explain as much 

experimental observation as possible. In Chapter 3, results from AES 

measurements are presented. In the AES measurements, surfaces with 

different adsorbed structures or different annealing histories are 

compared to elucidate that the similarities and differences visible with 

AES might reflect the similarities and differences in the structures of 

the three oxide structures. In Chapter 4, Debye-Waller factors are 

measured on NiO(lll) and NiO(lOO). The surface Oebye temperature of NiO 

is presented. The linearity of the Debye-Waller effect is found to hold 

down to temperatures 1/2 the surface Oebye temperature. This supports 

the suggestion that the condition for the Debye-Waller relation to be 

true can be relaxed [35]. In Chapter 5, some brief results about the 

pressure effect are presented. They suggest that the oxide epitaxy on 

Ni(100) has no dependency on the oxygen pressure in the range 10"' to 10"^ 

torr. 

This dissertation has accomplished the study on 0/Ni(100) in the 
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following aspects. . First, we quantitatively measure diffraction spot 

intensities and profiles during adsorption and annealing. This reveals 

whether and how changes in surface structures are correlated. The 

approach is similar to the recent study of oxygen on Pd(lOO) conducted in 

the same laboratory [36,32]. [Previous investigators have used 

qualitative, visual examination of LEED or RHEED patterns to draw such 

conclusions for 0/Ni(100) [e.g., If, 1%]. This work shows that such an 

approach can be misleading.] Second, adsorption is carried out at 

temperatures of 80 to 400 K. The majority of previous work has 

concentrated on temperatures of 300 and 400 K. Studying the entire range 

from 80 to 400 K allows us to make definitive statements about the effect 

of temperature on the surface orientation of the oxide, and on the 

conditions under which this oxide forms. This leads us to suggest two 

reasons why the published literature contains disagreement over oxide 

orientation. Third, a new oxide, (7x7), that has been overlooked for 

many years, is observed and studied to the great extent. Effort has been 

put in interpretting the real space structure of this pattern. Fourth, 

Debye-Vlal1er factor, and therefore surface Debye temperatures are 

estimated for NiO in this dissertation. Fifth, the pressure effect on 

the growth of oxide epitaxy is studied. The results do not support the 

belief that the epitaxy of oxide growing on Ni(100) has dependency on the 

pressure of oxygen. Finally, this study lends significant new insight 

into energetic factors which Influence oxide epitaxy on Ni surfaces. 
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CHAPTER 1: STRUCTURAL STEPS TO OXIDATION OF Ni(ICQ) 

Equipment and Experimental Procedures 

The experimental apparatus consists of a stainless-steel, ultrahigh-

vacuum chamber with a commercial, single-pass, cylindrical mirror 

analyzer (CMA) and coaxial electron gun, optics for low-energy electron 

diffraction, an ion bombardment gun, and a mass spectrometer, refer to 

Figure 1. A high resolution (Silicon Intensified Target) video camera is 

interfaced with a PDP-11 PC to quantitatively record the digitized LEED 

image. This video-LEED system can give information of integrated spot 

intensities and spot profiles during a continuous adsorption or annealing 

process. Figure 2 schematically shows how the data are obtained. 

Detailed description can be found elsewhere [M]. This conventional LEED 

is believed to have a transfer width of about 160 A [39]. The pressure 

in the chamber is 7 x 10"" Torr or less prior to each experiment. The 

oxygen used for adsorption is 99.998% purity contained in glass bowl. 

The 99.6% purity extra dry oxygen in lecture bottle is used for rough 

cleaning of the surface between experiments. The sample is mounted on a 

manipulator which can provide motion in x, y, z direction and rotation of 

360'. Detailed description can be found elsewhere [^]. Temperature is 

controlled through a feedback circuit designed by Herz et al. [41]. 

Intensities and profiles of diffraction features, measured in this work, 

are all corrected for background as described in Chapter 2 and Ref. M-
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Figure 1. Schematics of ultrahigh vacuum system and computer-

interfaced video-LEED used in this study. 
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The parameters used in Auger electron spectroscopy (AES) are these: 2 kV 

incident beam energy, 1 V peak-to-peak modulation amplitude, unless 

otherwise specified, and 0.2 n^ beam current. The nickel single crystal 

is disk-shaped, 1 mm thick and 9 mm in diameter, grown at the Materials 

Preparation Center of the Ames Laboratory. It is cut and polished to 

within 0.5" of the (100) orientation on both sides. 

In vacuum, the sample is initially cleaned by successive cycles of 

annealing and ion-bombardment, with the annealing carried out in 50 K 

increments to a maximum temperature of 1150 K. The major contaminants 

depleted by this procedure are S and CI. The carbon is then removed by 

repeatedly dosing the sample with oxygen and annealing to 1000 K, with 

occasional ion bombardment to remove a sporadic oxide. 

Between experiments such as those described in this chapter, oxygen 

or oxide on Ni(100) is removed by ion bombardment at 550-600 eV, with 1.8 

t^^ beam current, for 40 to 60 minutes, followed by annealing at 850 K for 

three minutes. Finally, residual carbon, as checked by AES after ion 

bombardment, is oxidized with small oxygen exposures (0.2 to 0.3 L) at 

310 K, followed by heating in vacuum to 950-1000 K. Small oxygen 

exposures are used to avoid formation of oxide on the surface during 

cleaning. After the sample is free of carbon, oxygen, and other 

contaminants, as determined with AES, it is finally annealed at 1050 K in 

vacuum for a total of one hour. This gives a sharp LEED pattern with low 

background intensity. The halfwidth of the integral-order spots is 0.009 

to 0.014 A"\ The LEED beam current is 0.5 to 0.7 pA. 

Other authors report that conditions necessary for oxidation of 
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Ni(100) can depend on sample history, especially upon previous oxidations 

lîtZltàZ]' Some of them hypothesize that this is because the density of 

surface and bulk defects, as well as the amount of oxygen dissolved in 

the bulk, are functions of the sample's history [£,42]• (The 

concentration of dissolved oxygen must be small, however, since it is 

undetectable with AES in nominally-clean samples.) This thesis describes 

results only for one Ni(100) sample, cleaned as described above. The 

data are reproducible over the duration of the experiments, about twelve 

months. The crystal is not subjected to extensive oxidation at 

temperatures above 400 K, nor at oxygen pressures above 10'^ Torr, after 

its initial cleaning. We have not checked the extent to which our 

results may be sample-specific, or may be altered by a history of more 

vigorous oxidation. 

Results 

Oxygen adsorption at fixed temperatures 

Figure 3 shows the relative intensities of 0 (503-507 eV) and Ni 

(848 eV) Auger transitions as a function of oxygen exposure, at seven 

different adsorption temperatures. At substrate temperatures of 400 K, 

350 K, 300 K, 225 K, and 180 K, it can be seen that the curves exhibit a 

common distinctive shape. There is an initial sharp increase in the 

Auger ratio, followed by a plateau at intermediate coverages, then a 

second increase in oxygen uptake, and finally a last plateau. The value 
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Figure 3. Ratio of oxygen-to-nickel Auger signals as a function of 

oxygen exposure, at seven different sample temperatures. The 

Auger ratio uses the oxygen KLL line at 503-507 eV, and the 

nickel LMM line at 848 eV. The oxygen pressure is 5 x 10"' 

Torr (at lowest exposures) to 1 x 10'^ Torr (at highest 

exposures) during oxygen dosing. Each arrow indicates the 

point where the right-hand edge of the plateau deviates from 

linearity. We define this as the oxidation threshold measured 

with AES. 
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of the Auger ratio at the first plateau Is constant at 15 to 20, and the 

value at the last plateau falls In another narrow range, 100 to 110. 

Curves with similar shapes have been observed by many authors during 

oxidation of N1 surfaces [2 and references therein]. It Is generally 

agreed that the end of the first plateau signals the onset of oxidation, 

and that growth of the oxide nuclei, and/or continuing formation of new 

nuclei, accounts for the second stage of rapid oxygen uptake [9]. It is 

also generally agreed that the onset of oxidation on Ni(100) occurs at a 

coverage below 0.50 monolayers, with values in the range 0.35 to 0.45 

most often reported r9-12.23-261. while the second plateau corresponds to 

two or three layers of oxide [9.23-261. The length of the first plateau 

decreases as temperature falls until, at the lowest two temperatures in 

Fig. 3, 150 and 80 K, only a trace remains. A decrease in the exposure 

spanned by the first plateau has also been observed by other authors, 

from temperatures of 400 to 300 K, and the absence of a plateau at 150 K 

or below has been reported too [9,23,25,26,23]. 

The oxidation threshold is determined from data such as those shown 

in Fig. 3, by defining it as the point where the right-hand edge of the 

plateau first deviates from linearity. It is shown in each panel of Fig. 

3 by an arrow. Note that the linear plateau is horizontal only at T > 

300; as temperature falls, it tilts increasingly upward. This may 

indicate that some oxidation begins even before the end of the "plateau", 

in fact the rising plateau almost seems to indicate that there are two 

superposed kinetic processes, one which leads to a plateau and one which 

leads to a constant rise In the extent of oxidation. The oxidation 
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kinetics associated with the plateau dominate at high temperatures, 

whereas the kinetics associated with the more constant rate of oxidation 

dominate at lower temperature. 

In Fig. 4, we show photographs of the LEED patterns which develop 

during oxidation of NI(IOO). A typical sequence of patterns during 

adsorption starts with the clean (1x1), then progresses to the p(2x2) 

(not shown), and continues with the c(2x2). The c(2x2) Is subsequently 

destroyed as oxidation progresses. At that point, a NiO(lll) surface, or 

a (7x7) pattern, can form, depending on the adsorption temperature. A 

NIO(IOO) surface can also be formed with a high oxygen exposure, followed 

by heating to T > 550 K. Figure 4A displays the LEED pattern of the 

clean N1 surface, while Fig. 4B displays a c(2x2) pattern. Figure 4C Is 

a photograph of the pattern of NiO(lll), which consists of 12 first-order 

spots arranged in a ring around the (0,0) spot (the "ring" pattern). 

This is actually a superposition of patterns from two degenerate NiO(lll) 

domains, rotated by 30' [27,34]' Figure 40 shows the (7x7), coexistent 

with ring and c(2x2) patterns, and Figure 4E shows the (7x7) alone. 

Figure 4F presents the pattern associated with NIO(IOO), coexistent with 

the p(lxl) and c(2x2). In this work, some of the LEED patterns of Fig. 4 

begin to be apparent at about 130 K; nothing appears at lower 

temperature. This is in agreement with other authors, who state that no 

patterns are visible upon adsorption at 80 K [29], and that the patterns 

are "barely detectable" (visually) upon adsorption at ca. 150 K [23]. 

All of these patterns, and the associated real-space structures, 

have been observed and discussed many times by others [e.g., 9 and 
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Figure 4. Photographs of LEED patterns. In each photo, the upward arrow 

Indicates the (1,0) spot, and the downward arrow shows the 

(T,0) spot. The dark shadow in the center Is the sample and 

manipulator. 

(A) p(lxl) of the clean NI(IOO) substrate, at 87 eV beam 

energy. 

(B) c(2x2) following 39 L oxygen exposure at 300 K, at 70 eV 

beam energy. 

(C) NIO(lll) "ring" pattern, observed after 200 L oxygen 

exposure at 225 K. Beam energy Is 60 eV. 

(D) (7x7) pattern plus c(2x2) and NIO(lll) "ring", obtained 

after 200 L exposure at 300 K, at 45 eV beam energy. 

(E) (7x7) pattern, observed when the sample is exposed to 570 

L Og at 350 K, then cooled to 80 K. Beam energy Is 50 eV. 

(F) NIO(IOO) pattern (very diffuse spots), plus p(lxl) and 

c(2x2), observed after 175 L exposure at 225 K, followed by 

heating to 605 K and cooling to room temperature. Beam energy 

is 88 eV. 
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referred references therein], with the exception of the (7x7). The (7x7) 

Is always faint, and associated with a high local background (as seen In 

Fig. 4D and E). Only the spots close to the Integral-order spots are 

ever visible. This may account for the fact that it has been reported 

for the first time very recently, by Saiki et al. [33]. It can be 

speculated that the high local background may have been mistaken by other 

authors for the diffuse spots of the NiO(lOO) pattern. In the 

experiments, there appear to be two distinct types of (7x7), 

distinguished by the relative intensities of various seventh-order spots. 

In particular, the relative intensities of the (0,5/7) and (0,6/7) 

features are reversed in the two seventh-order patterns, a trait which 

can be noticed in some of the data presented here. In this chapter, both 

of these structures are refered to as (7x7), or (7x7)-like; a detailed 

discussion of their possible origins can be found in the next chapter. 

Another point of note is that the diffraction features usually do not 

quite appear at seventh-order positions, as Saiki et al. have also noted 

[H]. For simplicity, however, they are refered to as (a/7,b/7) spots, 

where a and b are integers with values from zero to six. 

Figure 5 shows variations in LEED spot intensities as functions of 

increasing oxygen exposure, at substrate temperatures of 400 to 150 K. 

Figure 5A Illustrates the general trends. At T = 400 K, the intensity of 

the (0,1/2) spot (curve a) first increases, reaching a maximum at 1.8 ± 

0.5 L, then decreases as oxygen continues to adsorb. This signals the 

growth and subsequent destruction of the p(2x2) lattice as oxygen 

coverage Increases. Meanwhile, the (1/2,1/2) spot (curve b)--which 
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Figure 5. Variations In Integrated LEEO spot Intensities as a function 

of oxygen exposure, at six different sample temperatures. 

Note that the exposure range of Fig. 5F (T - ISO K) Is four 

times smaller than that of the other five panels, A-E. The 

beam energy Is 70 eV, and the oxygen pressure Is 5 to 6 x 

10"' Torr. 
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represents only the c(2x2) lattice at exposures above 10 L-- intensifies, 

reaching a broad maximum at an exposure of ca. 60 L. The (1,0) spot 

intensity (curve c) varies in a way which mimics that of the (1/2,1/2), 

except that it consistently passes through a maximum at lower exposure 

than does the (1/2,1/2) spot. For instance, in Fig. 5A the (1,0) maximum 

is at 40 L, 20 L below that of the (1/2,1/2) spot. Figures 5B-F show 

analogous results for adsorption temperatures of 350, 300, 225, 180, and 

150 K, respectively. The quality of the p(2x2) degrades markedly as 

substrate temperature falls, based on the lower intensity maximum for the 

(0,1/2) spot (curve a), in going from Fig. 5A to 5B. In fact, at T < 400 

K, the p(2x2) is no longer visible on the scale of Fig. 5. However, the 

exposure at which the p(2x2) reaches maximum intensity, 1.8 ± 0.5 L, is 

independent of temperature, within the temperature range where it is 

measurable at all(225 to 400 K). The maximum intensity of the c(2x2) 

(curve b) also falls as temperature decreases, particularly below room 

temperature. At temperatures of 300 K or below, however, the ring 

pattern of the NiO(lll) structure becomes visible, as evidenced by curve 

d in Fig. 5B-F. Indeed, the ring pattern reproducibly achieves its 

maximum brightness when oxidation is carried out at 225 K. 

Inspection of Fig. 5 reveals that several surface events are 

correlated. First, at T 3 350 K, the exposure at which the c(2x2) 

pattern (curve c) reaches maximum brightness always corresponds, within 

about 10%, to the threshold for emergence of the NiO(lll) pattern (curve 

d). Furthermore, this "threshold exposure" increases markedly with 

substrate temperature, as illustrated by Fig. 6. The threshold exposure 
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Figure 6. The "threshold exposure", I.e., the exposure at which the ring 

pattern, or the (7x7) pattern, first appears, as a function of 

sample temperature. These exposures are taken from LEED data 

such as curves d and e in Figs. S and 7, and are shown 

without error bars in Fig. 6. The exposure at the end of the 

first plateau In 0:N1 Auger Intensity (arrows in Fig. 3) is 

also shown as a function of temperature, by circular symbols. 

Error bars shown for the latter data Indicate the subjective 

uncertainty in exposure for each individual measurement, 

rather than a statistical uncertainty. The solid line is 

drawn to guide the eye. 
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increases by more than a factor of ten (from 4 L to 40-60 L), as 

substrate temperature increases from 150 to 300 K. Figure 6 offers a 

comparison of the exposure at which the NiO(lll) pattern first appears in 

LEED (square symbols), with the exposure at the end of the first plateau 

in the AES intensity of Fig. 3 (circular symbols). It can be seen that 

there is no significant difference between the two sets of data at any 

temperature. 

Figure 7 represents results from the LEED experiments when 

conditions of beam energy and sample temperature are chosen to optimize 

the (7x7) pattern. Note first that many of the trends of Fig. 5 are 

reproduced, including the fact that the (1,0) spot (curve c) and the 

(1/2,1/2) spot (curve b) pass through successive maxima. Also, the 

maximum brightness of the NiO(lll) ring pattern (curve d) increases as 

substrate temperature falls from 400 to 300 K, an effect visible also in 

the data of Fig. 5. However, the new information contained in Fig. 7 

regards the formation of the (7x7) LEED pattern, represented by curve e. 

The (7x7) pattern consistently emerges at about the same exposure 

where the c(2x2) intensity starts to decline. This exposure, shown by 

the triangles in Fig. 6, increases with increasing temperature, and 

correlates fairly well with the end of the first plateau in Auger 

intensity (circles in Fig. 6). In this sense, the (7x7) mimics the 

behavior of the NiO(lll) ring pattern observed in a lower temperature 

range (squares in Fig. 6.) This is evidence that the (7x7) pattern 

represents an oxide, as does the ring pattern. This point will be 

further discussed in Chapter 3. Furthermore, the (7x7) reaches maximum 
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Figure 7. Variations In Integrated LEED spot Intensities as functions of 

oxygen exposure, at five different sample temperatures. The 

beam energy, 46 eV, Is chosen to optimize the Intensity of the 

(7x7) pattern. The oxygen pressure Is 5 to 8 x 10'® Torr. 

Note that curve e In frames (0) and (E) Is displaced 

vertically for clarity. 
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intensity at an adsorption temperature of 350 K; at higher or lower 

temperatures, the pattern is fainter. A remnant of the (7x7) is visible 

at 225 K, but not below. 

As shown by Fig. 4D-E, and as noted previously, the (7x7) pattern is 

superposed on a high background intensity. Therefore, it is necessary to 

check whether the intensities given by curve e throughout Fig. 7 might be 

due to some artifact of this background intensity, and of our background 

subtraction procedure, rather than distinct (7x7) spots. Therefore, 

profiles of the (7x7) spots are measured. For instance, the profiles 

which correspond to the experiment of Fig. 7B are shown in Fig. 8. In 

Fig. 7B, the intensity of the (7x7) pattern rises above zero at about 70 

L; in Fig. 8, the (7x7) spots begin to appear also at about 70 L. Based 

upon this and other comparisons of the data, the intensities given by 

curve e in Fig. 7 are not artifacts of the diffuse background intensity. 

Figure 9 summarizes the maximum intensities of some diffraction 

features associated with nickel oxide, as a function of the substrate 

temperature during oxidation. It can be seen from this representation, 

as well as from the data of Figs. 5 and 7, that the ring structure of the 

NiO(lll) pattern becomes brightest below room temperature (between 200 

and 300 K). Correspondingly, the (7x7) reaches maximum intensity above 

room temperature, between 300 and 400 K. The temperature of 300 K is a 

"crossover point" between the ring structure and the (7x7) structure. 

This may account for some of the discrepancy between other laboratories' 

results, since a great deal of the previous work has been done at or near 

300 K--the crossover point [23,24,31]. 
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Figure 8» LEED spot profiles taken during Increasing oxygen exposure at 

T " 350 K, as In Fig. 78. Some curves are labelled with 

values of oxygen exposure In Langmulr. Each profile has been 

corrected by substruction of a constant background, as 

described In Chapter 2. This procedure does not change the 

positions of peaks along the x-axIs measurably. Each profile 

passes through the (-1/7, 6/7), (0, 6/7), and (+1/7, 6/7) 

spots. 
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Figure 9. Maximum absolute intensity of ring and (0, 5/7) spots as a 

function of sample temperature during oxidation, taken from 

data such as those shown in Figs. 5 and 7. The intensities 

are measured at two different beam energies: 70 and 46 eV. 

The intensities at 70 eV are normalized to those at 46 eV, 

using the 225 K data for the ring pattern. The oxygen 

pressure ranges from 5 to 8 x 10"' Torr for the 46 eV data, and 

5 to 15 X 10"' Torr for the 70 eV data. 
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Thermal!y-Induced changes after adsorption 

The evolution of LEED patterns have been examined when an oxidized 

sample is heated in vacuum, using samples prepared with a variety of 

total exposures, oxygen pressures, and adsorption temperatures. This 

discussion focuses on two particular experiments which are representative 

of many others. 

First, consider the case of a sample oxidized at adsorption 

temperatures of 180 to 225 K, where the oxide grows with the (111) 

surface orientation. Specifically, consider a sample which is first 

exposed to 80 L Og (P = 8 x 10"® Torr) at T - 200 K. Figure 5D and E 

demonstrate that these adsorption conditions are sufficient to complete 

the ring structure, and annihilate both the (1x1) and c(2x2) patterns. 

Note also from Fig. 9 that 200 K is close to the optimal adsorption 

temperature for NIO(lll) formation. When this sample is heated, then 

cooled, in vacuum, the data of Fig. 10 result. 

The variation of temperature with time is displayed in Fig. lOA, and 

selected temperatures are noted. Figure lOB-E displays integrated spot 

intensities as a function of time during this temperature program. As 

the sample is first heated, both the (0,1) spot and the (1/2,1/2) spot 

reappear and intensify, starting at 535 K. These two spots brighten 

rapidly between 535 and 610 K, then brighten more slowly between 610 and 

660 K. The latter temperature marks the point where heating stops and 

cooling begins. Meanwhile, the ring pattern fades continuously and 

gradually until 550 K, then drops rapidly to zero between 550 and 610 K. 
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Figure 10. Temperature and LEEO Intensities as functions of time, 

starting from a N10(l11}-covered surface. The surface Is 

prepared from NI(IOO) by oxidation at 200 K, In 8 x 10'® Torr 

oxygen, and with 80 L total exposure. The LEEO intensities 

are measured at 70 eV. 
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Other experiments show that the intensity decrease of the ring pattern 

between 200 and 500 K is reversible, and is thus due to Debye-Waller 

attenuation. Clearly, the emergence of the c(2x2) and (1x1) patterns is 

linked to the disappearance of the ring pattern, although the former two 

events begin about 15 K lower in temperature than does the latter, in 

this experiment. The average temperature at which the c(2x2) reappears 

is 540 ± 20 K, and the average temperature at which the ring pattern 

disappears is 560 ± 20 K. These values are based upon four similar 

experiments with samples oxidized at temperatures of 200 to 225 K. 

Furthermore, all three events are irreversible, as shown by the intensity 

variations during the cooling part of the cycle in Fig. 10. Spot 

profiles indicate that disappearance of the NiO(lll) pattern coincides in 

temperature with the emergence of the NiO(lOO) pattern. This is shown by 

Fig. 11, where the NiO(lll) spot diminishes between the 130th and 150th 

profile, T = 500-552 K, and the intensity of the NiO(lOO) spot starts to 

increase slightly below 500 K. When the sample cools down after heating 

up to 575 K, the ring spot does not reappear in the profiles. 

The first conclusion from these data is that irreversible changes in 

surface structure occur above 500 K. These changes mimic those which 

take place during adsorption (Fig. 50 and E), but in reverse sequence: 

the c(2x2) and (1x1) patterns re-appear, and the ring structure 

disappears. In short, the sample behaves as if oxygen coverage drops and 

a metallic Ni(100) surface is restored (at least partially). This point 

will be further discussed in Chapter 3. These events coincide with 

emergence of the NiO(lOO) pattern. Thus, NiO(lOO) and metallic Ni(100) 
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Figure 11. Showing the correlation of the two structures, NIO(lll) and 

NiO(lOO), and the irreversibility of phase transition. It is 

obtained from annealing the oxygen covered surface after 

adsorption at 130 K with pressure 1.2x10'® torr for 6 L, 

measured at 64 eV. 

(A) The temperature variation curve of the annealing process. 

(B) Marks the positions of the spots (blackened) that are 

monitored during annealing. 

(C) Intengrated spot intensity of NIO(IOO). 

(D) Profiles of NiO(lll) spot during annealing. 
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form at the expense of NiO(lll). 

The second conclusion from these data is that the ring pattern, once 

formed, is stable up to 500 K. Its intensity attenuates by approximately 

20% between 200 and 500 K, due to the Debye-Waller effect, but the 

pattern is clearly visible nonetheless even up to 500 K. This is 

important for understanding why the ring pattern is not visible during 

adsorption at T > 300 K, as shown by Figs. 5, 7, and 9. Clearly, its 

•absence under those conditions must reflect the fact that the NiO(lll) 

structure does not form. Its absence cannot be due to thermal 

dissolution, or Debye-Waller attenuation. As will be shown in Chapter 4, 

after more than ten sequential heating-cooling cycles of NiO(llI) to 

above 400 K, the ring pattern still persists, and does not degrade from 

dissolution. 

Now consider the situation when the oxidized sample is prepared at 

adsorption temperatures of 300 to 400 K, in which case the oxide takes 

the form of the (7x7) structure. For the particular experiment chosen to 

be presented here, the sample is first oxidized with an exposure of 370 L 

Oj (P = 8 X 10'® Torr) at T = 350 K. Figure 7B demonstrates that these 

adsorption conditions are sufficient to complete the (7x7) pattern, and 

erase the (1x1) and c(2x2) patterns. When this sample is heated in 

vacuum. Fig. 12 and 13 show the results. 

Figure 12B-E displays integrated spot intensities as a function of 

time, while the sample is heated and cooled in vacuum. The variation of 

temperature with time is displayed in Fig. 12A, and selected temperatures 

are noted in subsequent panels. The variation of the (0,1) spot 
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Figure 12. Temperature and LEED Intensities as functions of time, 

starting from a (7x7)-covered surface. The surface is 

prepared from NI(IOO) by oxidation at 350 K, in 8 x 10'^ Torr 

Og, and with 370 L total exposure. The LEED intensities are 

measured at 46 eV. 
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Figure 13. LEED spot profiles as a function of time, corresponding to 

the heat-cool cycle of Fig. 12A. Each profile Intersects the 

(0, 5/7), (0, 6/7) and (0,1) spots. The profiles are 

measured at 46 eV. Each profile has been corrected by 

subtraction of a constant background, as described In Chapter 

2. This procedure does not affect the positions of peaks 

along the x-axis measurably. 
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intensity is shown in Fig. 12B. As the sample is heated, the intensity 

of the spot (almost zero at the outset) first reaches a weak minimum at 

580 K, then grows. The (1/2,1/2) diffraction spot remains at zero 

intensity until a temperature of 560 K, then grows also, as shown in Fig. 

12C. Panels D-F show the intensity variations of three seventh-order 

spots. The (0,5/7) spot first fades, then starts to intensify at 575 K, 

and finally fades again as the sample is heated. Meanwhile, the (0,6/7) 

spot intensity reaches a sharp maximum at 580 K. The (1/7,6/7) spot 

declines to zero in this same temperature range (560-590 K). These 

rather complex changes in seventh-order spot intensities are due, mainly, 

to changing contributions from the two types of (7x7) patterns that will 

be discussed in detail in Chapter 2. The intensities of the (0,1) and 

(1/2,1/2) spots increase in the cooling cycle, presumably because of the 

Debye-Waller effect. The general trends described here are very 

reproducible, although the relative magnitude of each intensity change 

depends markedly upon the temperature at which the sample was initially 

oxidized. 

Again, these data show that gross, irreversible changes in surface 

structure take place above 500 K. The average temperature at which the 

c(2x2) appears is 560 + 25 K, and the average temperature at which the 

(0,6/7) spot reaches maximum intensity is 580 ± 15 K, following 

adsorption at 300 to 400 K. These values are derived from a total of 

five similar experiments. In all cases, Including Fig. 12, abrupt 

changes in the Intensities of seventh-order spots occur shortly after the 

c(2x2) and (1x1) patterns emerge. The LEED patterns indicate that, as 
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the sample is heated, oxygen is lost and some of the metallic Ni(100) 

surface reappears. Figure 13, which shows profiles of two seventh-order 

spots during this thermal cycle, helps to clarify why the intensities of 

the seventh-order spots change as they do in Fig. 12D and E. In Fig. 13, 

the (0,5/7) and (0,6/7) spots are replaced by the broad diffraction 

feature which is the signature of NiO(lOO), at about 580 K. The latter 

feature is intermediate in position between the two seventh-order spots. 

As the sample is heated, the weak (0,5/7) feature decreases first, and 

then completely disappears at about 580 K. On the other hand there is a 

brief intensification of the (0,6/7) spot, which is most obvious between 

about 550 and 580 K, but then it, too, rather abruptly disappears as the 

NiO(lOO) feature comes to dominate. The brief rise in intensity which 

precedes disappearance of the (0,6/7) spot, obvious also in Fig. 12E, is 

very reproducible. This occurs after the (0,5/7) and (1/7,6/7) spots 

have started to fade, so it is not simply due to an improvement of the 

(7x7) structure from annealing, since then all (7x7) spots would 

intensify similarly. Nonetheless, it is clear from Fig. 13 (and from 

other data in our laboratory) that the point at which the (0,6/7) spot 

abruptly fades (the sharp maximum in Fig. 12D) is also the point at which 

the NiO(lOO) becomes identifiable in LEED. As noted above, the 

temperature at which this occurs is, on average, 580 ± 15 K. This occurs 

about 15 K after emergence of the c(2x2), and intensification of the 

(1x1) pattern. The conversion of (7x7) to NiO(lOO) is irreversible, 

since the changes described above remain in effect when the sample cools. 

In summary, NiO(lOO) and metallic Ni(100) develop at the expense of the 
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(7x7) structure, at about 580 K. The (7x7) structure plays a role in 

Fig. 12 exactly analogous to that of the ring structure in Fig. 10. 

Finally, when the sample is heated after adsorption and oxidation, 

the ring structure never forms from the (7x7), nor vice versa. In short, 

heating does not bring about interconversion of these two structures. 

Rather, each converts directly to NiO(lOO) above 550 K. 

Discussion 

There are four main new results from this work. The first is the 

observation of the (7x7) LEED pattern, and its relationship to the LEED 

pattern of NiO. The second new result is the temperature-dependence of 

the oxide epitaxy on Ni(100). The third is the temperature-dependence of 

the oxidation threshold and oxide depth. The fourth concerns the 

structural changes which occur when the oxidized sample is heated in 

vacuum. 

(7x7) Pattern. Even though oxidation of Ni(100) has been studied 

extensively with LEED and other structure-sensitive techniques, the (7x7) 

pattern has not been reported until the very recent work of Saiki et al. 

[33]. Results from this work, combined with theirs, show that this 

pattern can be formed reproducibly by oxidation of different Ni(100) 

crystals and in different laboratories. This is important, in view of 

the irreproducibility which has been suggested to result from sample 

history and treatment [9,24,42]. The question then arises, why has the 

(7x7) not been observed previously? This may be because the pattern Is 
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quite faint, and is superposed on a large area of diffuse background. 

The large, diffuse background of the (7x7) (shown in Fig. 4D-E) lies in 

approximately the same area of reciprocal space as the NiO(lOO) spots, 

and without fairly precise measurements of spot profiles and spot 

positions it would be easy to mistake this background for the NiO(lOO) 

spots. In past experiments, visual observation has usually been the only 

means of measurement [e.g., 23, gg]. Also, it is our experience that the 

(7x7) is invisible at many beam voltages, which may contribute further to 

its omission by other authors. Therefore, we suggest that previous 

reports of NiO(lOO) formation in the temperature range 300 to 400 K and 

at pressures of 10"' to 10'® Torr are In error. 

The distinction between the (7x7) pattern and the NiO(lOO) pattern 

is shown most precisely by the profiles of Fig. 13, measured at a beam 

energy of 46 eV. At about 580 K in that experiment, the (7x7) disappears 

and the NiO(lOO) pattern emerges. Clearly, the NiO(lOO) spot is not at 

the same position as either of the nearest seventh-order spots, but 

rather falls between the (0,5/7) and (0,6/7) beams. On this point, we 

disagree with Saiki et al. [3â]> who say that the NiO(lOO) spot is nearly 

coincident with the (0,6/7) spot. Indeed, it should be nearly 

coincident; Ak,/27r = 0.843 A"^ for NiO, using the bulk lattice parameters 

[43], whereas Ak,/2?r = 6/7 = 0.857 A'^ and Ak,/27r = 5/7 = 0.714 

Instead, we find that the NIO feature is reproducibly farther from the 

(1,0) spot than It should be, at k,/27r = 0.806 ± 0.007 A'\ for a beam 

energy of 46 eV. The mean and variance here are based upon five separate 

measurements. The mean value of Ak, indicates that the NiO lattice is 
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expanded by 5% 1n the [010] direction. This contradicts other reports 

that LEED shows no difference from the bulk lattice constant of NiO [9], 

and that RHEED even shows a contraction of 2% in the [110] direction 

[24]> However, the position of the NIO(IOO) spot in k-space is also 

energy-dependent. The 5% contraction, based upon measurements at 46 eV, 

disappears at beam energies above 90 eV. Therefore, above 90 eV, our 

results agree with those of other authors [9,^]. This energy-dependence 

may reflect the different sample depths probed by electrons with 

different kinetic energies, the degree of lattice expansion then being a 

function of oxide depth. 

Saiki et al. [33] postulate that the (7x7) structure is a strained 

form of NIO(IOO). The data (which will be presented in full length in 

chapter 2) from this study suggest that the situation may be more 

complex. It appears that there are two kinds of (7x7), or at least two 

different stages in its formation. These two structures, or stages, 

differ mainly in the relative Intensities of various seventh-order spots. 

In this chapter, we are careful to draw only those conclusions which do 

not depend upon the subtle distinction between these two structures or 

stages. The details of our Interpretation are left for Chapter 2 and 3. 

Temperature-Dependence of Epitaxial Orientation. Figure 9 shows 

clearly that the epitaxial orientation of the oxide Is a strong function 

of adsorption temperature. The ring pattern, which corresponds to 

NiO(lll), reaches maximum intensity below room temperature, while the 

(7x7) pattern reaches maximum Intensity between 300 and 400 K. Finally, 

true NIO(IOO) forms above 550 K. This temperature-dependence is a second 
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factor which has probably contributed to conflict in the literature over 

which form of the oxide develops. Many previous studies have been at 

adsorption temperatures around 300 K, or nominally at "room temperature." 

As we have shown, this is just the temperature where NiO(lll) and the 

(7x7) structure "cross over", and a slight difference in adsorption 

temperature (by as little as 10-20 K) from the stated value can make a 

critical difference in the result. 

This temperature dependence must carry information about the 

mechanism of oxidation of Ni surfaces. NiO(lll) is favored kinetically, 

since it forms preferentially by oxidation at low temperatures. This is 

a surface consisting of layers of nickel or oxygen atoms, as shown in 

Fig. 14 [41], where the Ni layers are parallel to Ni(100). Fig. 15 shows 

the mechanism of the formation of Ni layers of (111) orientation of NiO. 

It is seen that nickel atoms in a Ni(100) layer only need to collectively 

move by rows (columns) in the x- (y-) axis, without changing the spacing 

between rows (columns). This results in the two equally possible domains 

of NiO(lll) rotated 30' from each other. Therefore, the observed 12-spot 

ring pattern is superposed by two hexagonal patterns with 30' rotation 

from each other. The NiO(lOO) surface, however, is the more 

thermodynamically-stable form of the oxide on Ni(100), since it forms 

irreversibly when the sample is heated. (See, for instance. Fig. 13.) 

Indeed, theoretical calculations demonstrate that the (100) is the most 

thermodynamically stable surface of bulk NiO [44,45]. This is an oxide 

in which each layer is a mixture of nickel and oxygen atoms. (Again, see 

Fig. 14.) 
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2.95 A 

NiO(11-1) 

2.49 A 

Ni(111) 

4.18 A 

NiO(IOO) 

>©Q©QO 

Ni(100) 

Figure 14. Representations of (111) and (100) planes of N10 and Ni, 

drawn to scale. The shaded circles represent Ni atoms, and 

the crosses indicate oxygen atoms. Note that NiO(lll) may be 

either nickel- or oxygen-terminated; only the latter case is 

shown. 
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Figure 15. Schematic depiction of formation of two NiO(lll) domains, 

rotated 30' from each other, from Ni(100). 

(A) Ni(100) surface 

(B) On the right, two equally possible domains of the (111) 

face of NiO. Domain 1 is resulted from the collective move 

of Ni rows in x axis while keeping the space between rows 

unchanged and domain 2 is resulted from the collective move 

of Ni columns in y axis while keeping the space between 

columns unchanged. Therefore, the nearest neighbor distance 

in the "reconstructed" (111) face is 2.8772 A, as derived 

from geometrical calculation, as marked in the figure, rather 

than 2.9536 A of the distance in regular NiO(lll). 

Therefore, the observed 12 spot ring pattern may correspond 

to a 2.5% contracted NiO(lll) epitaxy, which is diffcult to 

tell experimentally. 
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We propose the following model. Layered NiO(lll) forms when oxygen 

"slips between" layers of metallic nickel, accompanied by rearrangement 

of the nickel atoms within these layers. During this collective motion, 

most of the N1-N1 bonds within the metallic layers need not break 

completely as the oxide forms; the integrity of each layer of Ni atoms 

, can remain somewhat Intact as the process occurs. The activation barrier 

associated with this process is perhaps low. The density of Ni within 

each layer must decrease by 17% as the metal transforms to the oxide, but 

perhaps this density change is accomplished by formation of domain 

boundaries and steps at the surface. By contrast, the (100) face of NIC 

can form only if Ni atoms move into adjacent layers, forming sheets of Ni 

atoms non-parallel to the metal substrate. This may lead to a higher 

activation barrier for formation of the (100) oxide than for the (111) 

oxide. Thus, the (111) oxide is kinetically favored. 

This model is supported by results of other authors. The ion 

shadowing and blocking measurements of Frenken et al. [10,11], show that 

adsorption of oxygen on Ni(100) induces outward relaxation of the topmost 

Ni layer as shown in Fig. 16, accompanied by a substantial weakening of 

the force constants between first- and second-layer Ni atoms. Although 

the clean surface spacing is contracted by 0.06 A, relative to the bulk 

interlayer separation (1.76 A), the p(2x2) oxygen layer induces an 

expansion by 0.04 A, and the c(2x2) leads to an even larger expansion of 

0.09 A. The separation between adjacent Ni planes in NIO(lll) is 2.41 A, 

or 0.65 A larger than the bulk value. Clearly, the outward expansion 

induced by simple chemisorption is much smaller than that required for 
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[100] 

Ni (100) 
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1.70A 
(1.76) 

xxxx 

p(2x2) 
i.soA 

c(2x2) 
1.85A 

NiO(111) 
2.41 A 

Figure 16. Schematic depiction of mechanism by which NiO(lll) may form 

from Ni(100). The shaded circles represent Ni atoms and 

crosses represent oxygen atoms. Adsorption sites of the 

latter are not depicted literally in this sketch. 

Interplanar Ni-Ni spacings, drawn to scale, are taken from 

Refs. 10, 12;, and The value in parentheses is the 

interplanar spacing in bulk Ni. 
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oxidation, but it is nonetheless a step in the direction leading to 

NiO(lll). In fact, Frenken, van der Veen, and coworkers speculate that 

the chemlsorption-induced expansion might be a necessary precursor to 

surface oxidation [. The scenario that can be proposed here, in 

light of their results, is illustrated in Fig. 16. 

It is also useful to examine the data of Christensen et al. [27], 

who describe the effect of oxidation temperature on oxide epitaxy between 

290 and 770 K, starting from metallic Ni(lll). They find that NiO(lll) 

forms exclusively up to adsorption temperatures of 470 K, 160 K higher 

than the maximum temperature at which we observe NiO(lll) formation on 

Ni(100). Presumably, this higher temperature reflects greater stability 

of NiO(lll) on Ni(111) than on Ni(100). This can be rationalized in 

terms of the better symmetry match between the NiO(lll) overlayer and the 

Ni (111) substrate (both hexagonal lattices), relative to the Ni(100) 

substrate (a square lattice). Christensen et al. also find that NiO(lOO) 

tends to form irreversibly at temperatures above 470 K, indicating that 

this is the thermodynamically-favored form of the oxide also on Ni(111) 

[2%]. Thus, the results of Christensen et al. parallel ours. In both 

cases, NiO(lll) is the kinetically-favored epitaxial orientation, whereas 

NiO(lOO) is thermodynamically-favored. 

This comparison between the metallic Ni(111) and (100) faces, as 

starting points for oxidation, is informative. Christensen et al. 

suggested that the greater ease of formation of NiO(lll), relative to 

NiO(lOO), is due entirely to the better symmetry match between oxide and 

metal, as illustrated in Fig. 14. However, our results, starting from 
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the (100) face of the metal, are analogous to theirs. This suggests that 

something besides symmetry match with the underlying metal makes NiO(lll) 

kinetically-favored over NiO(lOO). We propose that this factor is the 

energy barrier to formation of a layered oxide epitaxy where Ni layers 

are still parallel to Ni(100), relative to the energy barrier for an 

oxide epitaxy that the Ni sheets are not parallel to Ni(100)(Fig. 14). 

Temoerature-Deoendence of Oxidation Threshold and Final Oxide Depth 

At temperatures of 80 to 400 K, we find good agreement between the 

oxidation threshold measured with AES, the very first appearance of the 

LEEO pattern associated with the oxide, and the maximum intensity of the 

c(2x2). This is true, regardless of whether the (7x7), the ring pattern, 

or some mixture thereof represents the epitaxial orientation. 

Previously, Holloway and Hudson reported that the first appearance of the 

oxide-related LEEO pattern (as determined by visual observation) lags 

considerably behind the maximum in c(2x2) intensity [23], and also well 

behind the oxidation threshold measured with AES [9,£3]. This led to 

some discussion in the literature concerning the relative sensitivities 

of AES and LEEO, with the conclusion that LEEO suffers in the comparison 

due to insensitivity toward very small crystallites [9]. Because RHEED 

observations indicated that the oxide patterns emerge at much lower 

coverage than did the LEEO observations, this led to the secondary 

conclusion that LEEO is less sensitive than RHEED, at least in this 

system [9,24]. These previous conclusions point to the danger of relying 

simply upon visual observation of LEED pattern intensities as a function 

of exposure, as Holloway and Hudson did in their original measurements 
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[£!]. Our data show that when quantitative measurements of LEED spot 

intensities are made, there is no significant difference between AES and 

LEED, nor (presumably) between LEED and RHEED, In measuring the onset of 

oxidation on Ni(100). 

The increase in oxidation threshold with increasing temperature, 

shown in Fig. 6, has been observed by others at 300 K and above [9.23-26. 

£9,21]. This temperature-dependence can be interpreted in one of two 

ways; either, oxide growth depends upon diffusion of the (molecular) 

mobile precursor, whose lifetime diminishes as temperature increases [9, 

21,24]; or, the oxide nucleates preferentially at defects in the adsorbed 

overlayer, which are less plentiful at high temperature [2,21,29]. Our 

data extend the range over which this threshold has been measured, to 

temperatures below 300 K. We observe a remnant of the first plateau in 

oxygen uptake, measured with AES, even as low as 80 K (see Fig. 3). Two 

previous, analogous measurements with XPS at 77 K failed to reveal this 

feature [26,29]. Future attempts to model the oxidation kinetics of 

Ni(100) may benefit from the broader and more continuous range of useful 

data presented in here. 

The depth of the oxide represented by the (7x7) is approximately the 

same as that represented by the ring structure. This statement is based 

upon data such as those of Fig. 3, which show that the final intensity of 

the oxygen Auger signal is essentially independent of adsorption 

temperature, between 80 and 400 K. Also, other authors, using other 

techniques, have reported that there is no significant temperature-

dependence in final oxide thickness between 80 and 400 K [e.g., 23, 
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26,22]' Most authors argue that this oxide is 2 to 3 layers deep 

[â»21>24»2fi]» although recent measurements by Saiki et al. support a 

thickness of about four layers [H]. We do not use our data to derive a 

value for the thickness of the oxide, but only to support the 

interpretation that the thickness of the oxide is temperature-

independent, and therefore epitaxy-independent, in this temperature 

regime. 

Structural Changes Induced bv Heating in Vacuum. We have made a 

detailed study of the structural changes which occur when a Ni(100) 

sample is oxidized at relatively low temperature (T < 400 K), then heated 

in vacuum. The results can be summarized as follows. In the range 500-

550 K, oxygen atoms at and near the oxidized surface begin to move. Part 

of the surface oxide converts back to metallic nickel, covered with a 

chemisorbed c(2x2) layer, and part converts to NiO(lOO). The former • 

event precedes the latter slightly in temperature. These events occur, 

independent of whether the initial oxide is the "ring" structure or the 

(7x7)-like structure. Some of the oxygen may also disappear via deep 

bulk dissolution, but we have no way of measuring the extent to which 

this takes place. Other authors report that the oxide which grows by 

adsorption at temperatures above 500 K is much thicker than that which 

forms at lower temperatures [e.g., 9,25,28], and so it is probable that 

the (100) crystallites which form upon heating above 500 K in our 

experiments are also deeper than the parent oxide. In fact, it may be 

that the "true" (100) orientation of the oxide is not stable unless it 

achieves a depth greater than that which is accessible during low-
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temperature, low-pressure oxidation. These two Irreversible events--

converslon to a metallic nickel surface covered by chemlsorbed oxygen, 

and nearly-simultaneous conversion to deeper oxide crystal11tes--suggest -

that the original, oxide "blanket" effectively disproportlonates when It 

Is heated above 500 K. There Is one other (brief) report on this topic 

In the literature. Using RHEED, Mitchell et al. [2à] observed that the 

diffraction pattern from NIO(lll) Is stable up to 600-625 K, where it 

disappears and the NIO(IOO) pattern Intensifies. This Is higher than the 

temperature at which the NIO(lll) pattern disappears In our measurements, 

ca. 500-550 K. (See Fig. 8.) The difference may be due to different 

techniques used for the low-temperature oxidation. Specifically, 

Mitchell et al. [££] tend to use much higher oxygen pressures and higher 

oxidation temperatures than we do. 

Summary 

This chapter describes the temperature- and exposure-dependent 

development of various LEED patterns observed during oxidation of 

Ni(100). Diffraction spot intensities are measured quantitatively and 

continuously, allowing unambiguous correlation of various surface 

processes. Auger electron spectroscopy provides an additional measure of 

the oxidation onset during adsorption, and the final relative thickness 

of the oxide. Our major results can be summarized as follows. 

1. A (7x7)-like pattern forms reproducibly upon oxidation of Ni(100). 
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Although the (7x7) pattern Is clearly distinguishable from the NiO(lOO) 

pattern under certain experimental conditions, it may have been mistaken 

by other authors for epitaxial NiO(lOO). 

2. Between 80 and 400 K, the development of LEED patterns associated 

with NiO is very temperature-dependent. The formation of NiO(lll) is 

favored by adsorption temperatures below 300 K, whereas the (7x7)-like 

structure is favored by adsorption temperatures of 300 to 400 K. Room 

temperature is a "crossover" point between these two forms of the oxide, 

which may have also contributed to previous discrepancies in the 

literature. We suggest that the low-temperature epitaxy is kinetically 

favored because it consists of nickel and oxygen sheets parallel to the 

substrate. 

3. In the temperature range 80 to 400 K, AES and LEED measurements of 

the oxidation threshold are in good agreement, independent of the oxide 

epitaxy. The threshold measured with these techniques also coincides 

with the maximum in c(2x2) intensity. The final depth of the oxide 

exhibits no measurable dependence on oxide epitaxy, in this temperature 

range. 

4. When the sample is heated in vacuum after adsorption, massive 

rearrangements take place above 500 K. Some of the nickel reverts to 

metallic nickel covered by a c{2x2) oxygen overlayer, and some forms NiO 

crystallites which are probably deeper than the oxide skin formed at 

lower temperature. Effectively, the surface disproportionates into a 

less-oxygen-rich phase and a more-oxygen-rich phase. This is true, 

independent of the epitaxial orientation of the initial oxide overlayer. 
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CHAPTER 2; POSSIBLE MODELS OF THE (7X7) STRUCTURE 

General Background Information about the (7x7) 

A (7x7) pattern that forms at temperatures of 300-400 K has been 

reported in the previous chapter. The (7x7) pattern is different from 

the patterns of two known oxide epitaxies, NiO(lll) and NiO(lOO). The 

pattern of NiO(lll) is characterized by a 12-spot "ring", whereas the 

NiO(lOO) pattern [which is obtained after annealing the adsorbed surface 

above 600 K] consists of broad and diffuse spots near the Ni(100) 

integral spots, as shown in Fig. 4C and F of Chapter 1. The (7x7) 

structure has been overlooked by other workers for many years. Very 

recently, Saiki et al. reported a (7x7), which they interpreted to be a 

strained NiO(lOO) structure [51]. The pattern they reported is 

presumably the same (7x7) pattern as ours, but their observations are 

restricted to the structure formed at room temperature only. The authors 

speculate that the (7x7) pattern is due to the 1.5% contraction of the 

NiO lattice. Refer to Fig. 17 for the observed (7x7) pattern and its 

real space model. This speculation is based on the fact that there is a 

numerical match between the lattice constants of Ni(3.5238A) and 

NiO(4.177A) crystals, i.e., every six NiO unit cells can be lain on seven 

Ni unit cells, if the NiO lattice is contracted (strained) by 1.5% from 

its normal lattice structure: 
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(3.5238 A X 7 - 4.177 A x 6) 
1.5% 

4.177 A 

However, there are some types of Information which previous authors 

did not consider, which lend additional Insight Into the validity of this 

and other models for the p(7x7) structure. This chapter will concentrate 

on the presentation and discussion of that additional information. 

First, quantitative measurements of the integrated spot intensity and 

spot profiles are presented here. Second, the (7x7) structure is 

monitored at varied adsorption temperatures (rather than only room 

temperature), which reveals some detailed features that would not be 

available otherwise. Third, Saiki et al. attributed the observed 7th 

order spots to the closer lattice match at or near every 7th substrate 

unit cell, or to the regions of near registry between the strained oxide 

overlayer and the substrate Ni(100). Refer to Fig. 17E for "the lighter 

colored-square positions". Figures 17C and D are the real space arrays 

of Ni(100) and NiO(lOO) with 1.5% contraction. Figure 17E is resulted 

from overlaying Fig. 17C and D. The absence of the 7th order spots, 

except a few spots near substrate integral spots, was attributed to the 

high mismatch In some regions between the strained NiO(lOO) layer and the 

Ni(100) substrate. Refer to Fig. 17E for the "darker color regions". If 

this model is correct, then in Fig. 17A the same kind of 7th order split 

should be equally observable at (0,0) beam. However, the authors did not 

show splitted spots at (0,0) In the schematic drawing of the observed 

pattern in Fig. 17B. This is clearly conflicting with each other between 

the observed (7x7) pattern in Figs. 17A, B and the real space model of 
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Figure 17. Shows the (7x7) pattern observed from LEED and the 

corresponding real space structure. After Salkl et al [31]' 

(A) LEED spot pattern observed for ambient-temperature 

saturated oxide on NI(OOl) at an Incident energy of 64 eV. 

(The specimen holder obscures some spots from left to right 

across the Image.) At right the positions and suggested 

origins of the several structures are Indicated. 

(B) Same as (A), but after a light anneal to approximately 

523 K over about 10 min. 

(C) The array of N1 atoms on the surface of Ni(001), with 

various directions noted. 

(D) The N1 atoms in the proposed superlattlce of NiO(OOl) 

with a Va " 16.7% lattice constant expansion with respect to 

the Ni(001). 

(E) An overlay of the two structures In (C) and (0) 

indicating the nature of the commensurate superlattlce 

formed, as well as regions of both good registry (lighter 

color) and high mismatch and/or strain (darker 

color). 



www.manaraa.com

63 

LEED-0/Ni(00n. 1200L 
Beam Voltage: 64 V 

(A) No Anneal: 

N10(00t)-̂ « 
NiOlllll-f o 

(B) Annealed: 

•| 

k0 85'0 864 
-I 00-

c(2x2)0 

NiPfWIVNIfOPD Supgrianiw 
(C) N'(OOI) 

•••.•AW.,.,.,., 

• loio) 

21 unit cells 
{74A) 

I* • • • • • # # • • mm 

*—21 unit calls — 
(74A) • -> 

[1001 (1101 

NIO(OOI) with 1/6 Unit Cell Expansion 

Id unit cells 

- XWX''-' "-

ifcli 
I*—18 unit colls —*1 

( E ) Ni0(001)/Nl(001) Supflrlalllce 

3 unit cells 

3 unit ceils 



www.manaraa.com

64 

17E. The contradictions of this model to their own experimental 

observations, especially, to our quantitative measurements of the (7x7) 

pattern in the broader temperature range during adsorption and annealing 

process, strongly suggest that further and better understanding of the 

(7x7) structure is necessary. 

We find that the (7x7) structure is far more complex than what they 

have reported. First of all, the (7x7) pattern obtained at different 

adsorption temperatures are slightly different. Besides the pattern they 

reported, with 4 fractional 7th order spots around the integral spot of 

Ni(100), as shown in Fig. 18B, we also see another pattern with 8 

fractional 7th order spots around integral spots of Ni(100), as shown in 

Fig. ISA, although the (±1/7,5/7) and (±1/7,1) spots are much less 

intense than other spots. Refer to the LEED photos taken for the (7x7) 

patterns obtained at adsorption temperatures of 325 K, 350 K and 375 K in 

Figure 19A, 8 and C. Second, there are differences in relative 

intensities of various 7th order spots, which are clearly monitored by 

measuring the spots profiles as the structure grows during constant 

temperature adsorption. Third, when the adsorbed surface is heated, the 

intensity changes of various fractional spots are rather peculiar, such 

as those shown in Fig. 12, which are not mentioned, presumably not 

checked under these varied adsorption and annealing conditions, in 

Saiki's report. 

To extend the discussion on the (7x7) structure, more data like 

those shown in Figs. 8, 12 and 13 will be presented. Several possible 

models will be compared: the multiple scattering model, the overlayer 
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modulation model and a model with highly correlated anti-phase walls 

within the (7x7) unit mesh (referred to as anti-phase wall model from now 

on). Preference is given to the anti-phase wall model, which not only 

quantitatively simulates the intensity of various 7th order spots, but 

also predicts there should be no split spots at (0,0). Note both the 

spot profiles and the integrated spot intensities presented here have 

been subtracted from a constant background. In the case of spot 

profiles, a minimum intensity in the profile data array of profile length 

plus additional 7 pixels at each end is taken for the constant background 

to be subtracted from. In the case of integrated intensity, intensities 

of a 7 pixel long additional area at each end are obtained and averaged 

as the constant background. 

LEED Results for the (7x7) Pattern 

Adsorption at fixed temperatures 

Some of the data concerning the (7x7) LEED pattern have already been 

presented in Chapter 1, where we concluded that the NiO(lll) structure is 

the low temperature (150-300 K) epitaxy and the (7x7) pattern forms at 

temperatures around 300-400 K. The pattern is most observable if 

adsorption is done at -350 K. Patterns formed at the vicinity of above 

and below 350 K are slightly different, as shown in the schematic drawing 

of Fig. 18A and B, they are perhaps from two stages of the formation of 

(7x7). In this chapter, to support our argument of the observation of 
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Figure 18. Schematics of the two kinds of (7x7) patterns observed. 

(A) First stage (7x7) pattern, where the relative Intensities 

are noted by spot blackness. (±1/7,5/7) and (±1/7,1) are 

weakest In Intensity among the spots shown here. 

(B) Second stage (7x7) pattern, where the 4 fractional spots 

around (0,6/7) are about equally Intense. 



www.manaraa.com

67 

o o o  
G #0  

( A )  o e o  ( A )  

Oeb OOO 
o##  o  (•/7.0) 0  e  o  
ooo  (0.0) ooo  

• 

(0,8/7) oeo  
oeo  
o o o  

(0,1) 

O 
o e o  

e  ( B )  

o  O 
oee  o  (S/7,0) 0 9 O (l'W 

6  • i  
(0.0) o  

(0.8(7) e  
oeo  

o  
#.1) 



www.manaraa.com

Figure 19. LEED photos of (7x7) pattern obtained by adsorption at 

different temperatures. Integral spots (1,0) and (-1,0) are 

Indicated by arrows. 

(a) Obtained after adsorption at 325 K with 5.5x10'^ torr 

for 368 L, photo taken at 58 eV beam energy and 300 K. 

(b) Obtained after adsorption at 350 K with 5.5x10"® torr 

for 400 L, photo taken at 65 eV beam energy and 80 K. 

(c) Obtained after adsorption at 375 K with 6x10® torr 

for 527 L, photo taken at 50 eV beam energy and 300 K. 
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(7x7) structures we can further quantitatively show the growth profiles 

of 7th order spots during adsorption in Figure 20A, B, C and D, where 

oxygen is adsorbed at 325 K, 350 K, 375 K and 400 K respectively. Two 

profiles crossing the (0,6/7) spot, one along (0,5/7), (0,6/7) and (0,1), 

and the other along (-1/7,6/7), (0,6/7) and (1/7,6/7), are taken 

simultaneously in each case. Also the integrated intensities of (0,6/7) 

and (0,5/7) during the same adsorption processes are measured 

concurrently, as shown in Figure 21. But in order to see the trend 

clearly in the temperature range of 300-400 K, the integrated intensities 

are measured from 310 to 400 K at five different adsorption temperatures. 

Figure 20A and B clearly show that the spot (0,5/7) is more intense than 

that of (0,6/7), especially in B, where the 7th order spots are well-

developed and resolved. On the other hand, in Fig. 20C and D, (0,6/7) 

spot become the more intense spot, relative to (0,5/7). These two kinds 

of spot profiles are evidence that suggest there are two types, or let us 

call them "two stages of the (7x7) structure" as in Chapter 1. Although 

Figure 21 shows that the (0,5/7) spot is about as intense as the (0,6/7) 

spot, due to the constant background subtraction, if adsorption is done 

at a temperature of 300-350 K, however, the intensity of (0,6/7) spots is 

increasingly higher than that of (0,5/7) if oxygen is adsorbed at 350-400 

K temperature range. These results are at least reproduced twice at each 

adsorption temperature. This is another evidence that suggests as 

adsorption temperature goes from below 350 K to 400 K, a (7x7) pattern 

with stronger (0,6/7) spot is forming. Noticeably, in either cases the 

7th order spots overlap with a broad and diffuse background which was 
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Figure 20. 7th order spots growth profiles during oxygen adsorption. 

(A) Adsorption at 325 K with 5.5x10'® torr pressure, beam 

energy is 46 eV. 

(B) Adsorption at 350 K with 5.5x10"® torr pressure, beam 

energy is 46 eV. 

(C) Adsorption at 375 K with 6.0x10'® torr pressure, beam 

energy is 46 eV. 

(D) Adsorption at 400 K with 9.0x10 ® torr pressure, beam 

energy is 46 eV. 
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argued, by others, as owing to the coexistence of small clusters of 

NiO(lOO) domains when (7x7) structure develops [lê]. It is observable in 

the growth profiles of 7th order spots in Fig. 19, this high background 

is more centered on (0,6/7) for the adsorption at 400 K and shifted 

toward (0,5/7) for adsorption at 350 K. The possible cause of the high 

background will be discussed later in this chapter. 

Annealing in vacuum 

The changes in the integrated intensities and spot profiles of 7th 

order spots during annealing have already been partly shown in Figure 12 

and 13, and discussed in Chapter 1. Here, more data, measured at 

different conditions, are presented so that detailed discussion focusing . 

on the (7x7) structure can follow. In Fig. 22 data similar to those in 

Fig. 12, from experiments where oxygen were adsorbed at two substrate 

temperatures 350 K and 400 K, are shown. In both Figures 22A and B, 

there is a noticeable common trend in the intensity change of (0,5/7) and 

(0,6/7) spots. We can discuss this trend according to the divided 

temperature regions a and $. In region a, (0,6/7) spot intensity 

increases, and (0,5/7) intensity decreases. In region (0,6/7) 

intensity decreases and (0,5/7) spot intensity increases, although the 

magnitude of intensities are different in Figs. 22A and B due to the 

difference in adsorption temperatures, adsorption at 350 K gives the more 

intense and better resolved (7x7) pattern. Also, each region in Fig. 22B 

slightly lags -20 K behind that of Figure 22A. For the specific 
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Figure 21. Integrated Intensity of (0,6/7) and (0,5/7) during oxygen 

adsorption at different substrate temperatures. 

(A) Adsorption at 310 K with 5x10'^ torr pressure, beam energy 

Is 46 eV. 

(B) Adsorption at 325 K with 5.5x10'* torr pressure, beam 

energy Is 46 eV. 

(C) Adsorption at 350 K with 5.5x10'" torr pressure, beam 

energy is 46 eV. 

(D) Adsorption at 375 K with 5x10'® torr pressure, beam energy 

Is 46 eV. 

(E) Adsorption at 400 K with 9x10'® torr pressure, beam energy 

is 46 eV. 
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experiment in Fig. 22A, region a ranges from 500 K to 570 K, and region 

from 570 to 630 K, whereas, in Fig. 22B region a ranges from 520 K to 585 

K, and region p from 585 K to 650 K. These differences in transition 

temperatures between Figures 22A and B are not significant. They are 

within the experimental error. 

The intensities both of (0,5/7) and (0,6/7), in both cases, start to 

increase at temperature above 620-640 K, which corresponds to the 

appearance of the NiO(lOO) structure evidenced by the diffuse and broad 

spots near integral spots of Ni(100) as observed by LEED. This figure is 

the third evidence that suggests during annealing, at temperatures above 

500 K, (0,5/7) spot degrades and (0,6/7) intensifies. Until temperature 

reaches 570-585 K, then the (7x7) structure gives in to the NiO(lOO). 

The 7th order spots profiles, similar to those shown in Fig. 13, during 

annealing are shown in Figure 23. Figure 23A, B and C are 7th order spot 

profiles during annealing of surfaces adsorbed at 300 K, 350 K and 400 K 

correspondingly. In Fig. 23A, the slight intensification of (0,6/7) just 

before it fades into NiO(lOO) starts between the 150th and 160th profile, 

ca. 520 K, then at 580-590 K (about the 200th profile), (0,6/7) 

completely disappears and NiO(lOO) emerges. Similar behavior is more 

obvious in Fig. 238, where (0,5/7) is smoothed out around the 120th or 

130th profile (ca. 530 K) and (0,6/7) slightly intensifies at the same 

time. Around the 170th profile, the (0,6/7) spot is smoothed out by 

NiO(lOO) which is located between (0,5/7) and (0,6/7). Again, in Fig. 

23C, (0,6/7) slightly intensifies at ~150th profile(~520 K) and fade out 

between 210th-220th profile. They indicate that the point, where the 
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Figure 22. Changes of Integrated spots Intensity during annealing. 

(A) Obtained after adsorbed oxygen at 350 K with 

5x10'^ torr pressure for a total of 162 L exposure and then 

heating to 640 K with the heating rate 1 K/sec. 

(B) Obtained after adsorbed oxygen at 400 K with 

9x10'^ torr pressure for a total of 234 L exposure and then 

heating to 652 K with the heating rate 1 K/sec. 
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(0,6/7) spot intensity in Fig. 22 starts to increase corresponds to the 

disappearance of (0,5/7) spot and slight intensification of (0,6/7) spot, 

marked by filled arrows in Figure 23, and the point where the (0,6/7) 

intensity starts to decrease corresponds to the appearance of broad 

NiO(lOO) spots and the disappearance of (0,6/7), marked by open arrows in 

Figure 23. This evidences that the peculiar behavior of the integrated 

spot intensity in Fig. 22 are not due to artifacts. The increase or 

decrease in spot intensity is indeed due to the intensification or 

degradation of (0,6/7) and (0,5/7) spots. We also notice that all the 

NiO(lOO) structure obtained after annealed to above 640 K show an average 

of 5% expansion, at the electron beam energy used (46 eV), from its 

normal lattice structure, which has been reported by Christensen et al. 

[27]. They observed the NiO(lOO) lattice expanded by about 7% from the 

bulk NiO lattice parameters. 

Possible Models for the (7x7) Pattern 

Multiple scattering model and overlaver modulation model 

Satellite spots around integral order spots have also been observed 

on other systems with LEED. For instance. May and Germer reported 

satellite spots of 0/Ni(110), which was attributed to multiple scattering 

effect [47], and Palmberg and Rhodin observed satellite spots of 

Ag/Cu(100), which was interpreted with both multiple scattering theory 

and overlayer modulation model [48]. Usually, appearance of "extra" 
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Figure 23: 7th order spot profiles during annealing for adsorptions done 

at different temperatures. 

(A) Obtained after adsorption at 300 K for 232 L, then heat 

to 648 K. 

(B) Obtained after adsorption at 350 K for 360 L, then heat 

654 K. 

(C) Obtained after adsorption at 400 K for 270 L, then heat to 

652 K. 
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spots, which would not occur if only kinematical or single scattering Is 

considered and if overlayer is planar, are important features in 

diffraction pattern, that indicate multiple scattering or overlayer 

modulation need to be considered. The former considers the occurrence of 

"extra" spots in terms of the multiple diffraction event. The latter 

considers the rise of "extra" spots in terms of the overlayer distortion 

relative to a planar configuration. Both theories are tried in this 

section to interpret the (7x7) pattern. The purpose is to see how well 

each theory can explain the experimental observations. 

Multiple Scattering Theory The multiple scattering theory, as it 

is developed by Tucker [42] and Taylor [50] and later modified by Bauer 

[51] and Jona [52] predicts that the multiple-diffraction beams (spots) 

observed with the greatest intensity are those which correspond to a 

combination of one low-order overlayer reciprocal lattice vector and one 

low-order substrate reciprocal lattice vector. Additional multiple-

diffraction beams, detected with considerably less intensity, can be 

attributed either to double-diffraction processes involving higher-order 

diffraction beams of the substrate and overlayer, or to triple-

diffraction process. 

According to this theory the spots, beside single diffraction beams 

of substrate and overlayer, that are intense should include: 

(1,6/7), (1/7,6/7), (-1/7,6/7), (6/7,1), etc. 

For instance, (1,6/7) is resulted from the combination of (0,6/7) and 

(1,0) of low-order overlayer and substrate spots. 
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The spots that are considerably less Intense should Include: 

(0,5/7), (-1/7,5/7), (1/7,5/7), (6/7,5/7), etc. 

For example (0,5/7) can be attributed to a double-diffraction process: 

(0,5/7) = (0,12/7) + (0,-1). Since the diffraction involves the higher 

order beam (0,12/7) of overlayer, (0,5/7) is predicted to be considerably 

less intense than those beams such as (0,1), (0,6/7), (1/7,6/7) and 

(-1/7,6/7) etc. However, this prediction contradicts with experimental 

observations, refer to Figs. 19 and 20 where the intensity of (0,5/7) is 

comparable or even higher than that of (0,6/7). 

Overlayer Displacement Modulation Model The idea of overlayer 

displacement modulation considers the adatoms, that are not in registery 

with substrate, are trying to conform to the substrate structure to 

reduce the total energy. This conformity of the overlayer structure to 

the substrate to form a large "superstructure" unit mesh results in 

periodic displacements of overlayer atoms from a planar, non-distorted 

configuration. The picture of overlayer and substrate arrangement is 

similar to the one Ertl and Kupper used to describ the multiple 

scattering theory [53]. Refer to Fig. 24, where the open circles 

represent Ni or NiO unit cells of 2-dimensional. But the approach here 

is kinematic or pseudokinematic. It considers only how the distorted 

overlayer contributes to the fractional(splitted) spots. 

The unit mesh scattering factor is known as [54]: 
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F(hk)»Sf, Exp{-27ti[hXj+kyj+(l+cosÔ)Zj/A]} (2.1) 
i-0 

where 9 - angle in^out. 

Xj, Yj "Coordinate relative to substrate. 

A = incident wavelength. 

The periodic displacement of overlayer in z-direction can be expressed in 

a periodic function: 

Zj=acos(2jrXj/7) (2.2) 

«-amplitude of displacement relative to 

a planar substrate configration. 

In the above equations Xj runs in steps of 7/6 from 7/6 to 6. 

or Xj = 7/6(j where (j"1....6, for 

y-0,7/6,...35/6. 

Substitute Xj and Zj into eq. (2.1), complicated derivations can be 

found in Appendix 1., following results can be obtained: 

In addition to substrate integral spots, overlayer primary 

diffraction spots should be observed at; 

h=m6/7 , k=n6/7 where m, n are integers 

secondary diffraction spots should be located at: 

h-(6m±l)/7 , k=(6n±l)/7 

higher order diffraction spots are at: 

h=(6m±2)/7 , k=(6n±2)/7 

and so forth. 

The intensities of the secondary order spots should be -5-12% that 

of primary spots, and third order spots should be -0.02-0.35% that of 
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overlayer unit cell a 

OOOO substrate cell b 

Figure 24. Model of the overlayer modulation theory. 
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primary spots. Again, these intensity predictions contradict the 

experimental observations. For instance, in this prediction, (0,5/7) is 

one of the secondary diffraction spots, which presumably should be 5-12% 

of the (0,6/7) spot Intensity. This obviously disagrees with 

experimental results. Search of other possible model continues after the 

failure of the last two. 

Anti-phase wall model 

A new approach to the problem leads to a structure with highly 

correlated anti-phase walls within the (7x7) unit mesh. This structure 

can better explain the experimental observations than the previous two, 

although it too has some weakness. 

It is known NiO has the NaCl lattice structure. The unit cell is 

drawn in Fig. 25A, where open circles and black dots represent either 

oxygen or nickel atoms. To simplify the problem, two-dimensional unit 

cell is shown in Fig. 258 and will be used in the discussion of (7x7) 

structure modelling from now on. The oxidation of Ni(100) is generally 

thought to be a nucleation and growth process. To picturize the 

oxidation progression, Figure 26A shows randomly distributed oxide nuclei 

start on the lattice mesh, 8 shows the 1-dimension situation when grown 

nuclei meet others at the boundaries (to distinguish this from the 

conventional concept of domain boundaries, we will call it wall from now 

on). In Fig. 268, two pictures of the grown nuclei are drawn. One shows 

that the grown nuclei meet in-phase and form a uniform NiO lattice, the 
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other shows that they meet anti-phased and build anti-phase walls between 

them. Practically, there is no reason for them to meet in-phase and form 

a uniform N10 lattice. It is likely that they will meet and form walls 

between them. Therefore the first picture of Fig. 26B will not be 

discussed further. With the kinematic theory, assuming scattering factor 

f for NiO unit cell, the one-dimensional lattice factor of the structure, 

as shown in Fig. Z6B, with randomly distributed walls can be written as 

following; 

ĝ((ha*)6%a_̂ g(1ha*)7%â g(lha*)9a  ̂

f(l-l+l+l+l+l-l-l+l....) h=odd (2.3) 
=( 

f(1+1+1+1+1+1+1+1+1 ) h=even 

where F*F « I, the diffraction intensity. 

a is lattice constant. 

a*=27r/a, reciprocal space lattice constant. 

Obviously, because of the presence of anti-phase walls, when h is odd, 

spot splitting may occur due to the alternation of scattering factors, 

which results in constructive or destructive diffractions. The splitting 

should be equally possible along k axis, when k is odd. Obviously, F 

varies with the distribution of anti-phase walls. Therefore changes in 

the oxide growth condition will result in different anti-phase wall 

arrangement, and therefore a different F*F. A different splitting 

pattern, therefore, results. This qualitatively explains why two 
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Figure 25. NiO unit cell (NaCl type lattice structure). 

(A) 3-dimension, (B) 2-dimension. 
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Figure 26. Pictures of the nucleatlon and growth process of Ni(100) 

oxidation. 

(A) Oxide nuclei start randomly on the 2-dimens1onal lattice 

mesh. 

(B) Two situations for the grown oxide nuclei to meet, one is 

to meet in-phase, the other anti-phase with anti-phase walls 

built randomly (one dimensional schematics). 

(C) The picture of an assumed more regularly distributed 

wall. 
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Figure 26 (Continued) 
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different patterns could be observed. This qualitative explanation is 

consistent with experimental observations shown in the LEED photos of 

Figures 19 and 27, where split only occurs at spots with either h or k 

odd, e.g., (0,+l), (±1,0), (±1,1) and (1,±1). No split is observed at 

(0,0) beam. 

To quantitatively explain why the split is in 7th order and why 

there are two kinds of patterns observed, one with (0,5/7) more intense 

and the other with (0,6/7) more intense, some kinematic simulation is 

needed. Now let us look at the one-dimensional structure, with randomly 

distributed walls as shown in Fig. 26B, in another way. In Fig. 28A, 

assuming the NiO unit cells can be numbered along x-axis, then we will 

see, along the one-dimensional lattice, there are two types of NiO unit 

cells, one with positive scattering factor f, the other with negative 

scattering factor -f, as shown in Fig. 28B. Therefore the scattering 

factors of NiO unit cell on surface alternate in the way shown in Fig. 

29A. To simplify the problem, anti-phase walls can be assumed to 

alternate in a more regular manner, as shown in Fig. 26C. The 

corresponding scattering factor function is shown in Fig. 29B, where M is 

the average periodicity of anti-phase walls. By Fourier transformation, 

the scattering factor function shown in Fig. 29B can be expressed in an 

analytical form: 

fM(y) = (4/%)Z[l/(m+l)]sin[(2m+l)%y/M] (2.4) 
m=0 

The kinematic diffraction intensity in 2-dimension is: 
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Figure 27. LEED photo of the (7x7) structure at 78 eV, obtained after 

adsorption at 350 K, with pressure 5.5x10'® torr for 400 L. 

The photo is taken at liquid Ng temperature. Integral spots 

" (0,1), (1,0), (-1,0) are marked by arrows. 
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N,-l N,-2 2 

I(hk) « 2^ ^ f fnCnj) exp{2;ri(n,h+n2k))| 
n̂ "0 ng'O 

or 
sin^(27rh) jng-O 

ij-i 
Zf(n2) exp(2%1n2k) 

2 

(2.5) 

It is the summation term above gives split along k-axis (similarly split 

along the other direction can be derived). Detailed derivation of this 

equation can be found in Appendix 2. The summation term in the above 

equation can be further simplified to give: 

Detailed derivation can be found in Appendix 3. It is found that when 

the average periodicity M=1.75 of the substrate unit cell, 7th order 

split will occur with the (0,5/7) fractional spot most intense, and when 

M=3.5 the 7th order split also occur, but with the (0,6/7) fractional 

spot most intense in the latter case. The simulated spot profiles are 

shown in Fig. 30A and B for the two cases. Neither the peak intensity 

ratio of (0,5/7) to (0,6/7) in Fig. 30A proportionate to that of the 

experimental results of Fig. 20A and B, nor the ratio of (0,6/7) to 

(0,5/7) in Fig. 30B to those of Fig. 20C and D. That is because in 

calculation the arrangement of anti-phase walls are assumed to be 

. 4 lm 
F F - -- S l/(2m+l){exp[i7r{k+(2m+l)/2M>(N-l)] 

%r m=0 sin TT [k+(2m+l)/2M] 

sin Njr[k+(2m+l)/2M] 

-exp[i7r{k-(2m+l)/2M)(N-l)] 
sin N%[k-(2m+l)/2M] ^ . 

)  (2.6) 
sin It [k-(2m+l)/2M] 
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H -
Figure 28. The same one-dimensional lattice as that shown in Figure 26b 

is duplicated here. 

(A) One-dimensional lattice with randomly distributed walls 

and NiO unit cells numbered along the x-axis. 

(B) Two types of NiO(lOO) unit cells with scattering factors 

f and -f. 

«0 
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Figure 29. Scattering factor functions. 

(A) Scattering factor function with randomly distributed 

walls of Fig. 26B. 

(B) Scattering factor function of assumed regularly 

distributed walls of periodicity M. 
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perfectly uniform and regular. The size of lattice is assumed to be 100 

unit cells in the calculations. The imperfection in real lattice 

structure broadens and reduces the diffraction peak. Also the 

experimental intensity of (0,1) spot is higher than what is expected 

theoretically, perhaps because of presence of uncovered Ni(100). Since 

the lattice constant of Ni(100) is 3.5238 A and the 1.5% contracted 

NiO(lOO) lattice constant is (1-0.015)4.177 A = 4.1143 A, therefore 1.75 

x 3.5238 A - 1.5 X 4.1143 A, i.e., the average periodicity M-1.75 of 

Ni(100) unit cell is equivalent to 1.5 of the oxide overlayer unit cell. 

Similarly, 3.5 of the Ni(100) unit cell is equivalent to 3.0 of the 

overlayer unit cell. The real space structure corresponding to M=1.75 

and 3.5 can be drawn in Fig. 31A and B. However, the actual structure 

may not have anti-phase walls arranged so perfectly ordered. Slight 

disorder at the wall (for instance missing atom due to repulsion of ions, 

Ni"^* or 0^*, with same charge) region are allowed. Some facts seem to 

support this model, for instance the FWHM (full Width at Half Maximum) 

reduced by 35% when M change from 1.75 to 3.5, as shown in Fig. 32A and 

b. Experimentally, the data also show a slight but reproducible 

reduction by 5-10%. Another fact is that in Fig. 31, although the walls 

repeat in either M=1.75 or 3.5, the larger (7x7) unit mesh is the real 

repeating unit, i.e., the oxide overlayer is in registry with every 7th 

Ni(100) substrate unit cell. That is understandable because in order for 

the overlayer NiO to conform to the substrate Ni(100), forming the (7x7) 

unit mesh will cause the least lattice deformation (contraction or 

expansion). The formation of unit meshes with any other size will 
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Figure 30. Theoretically simulated spots profiles. 

(A) Average domain size M=1.75, number of unit cells in 

lattice is 100. 

(B) Average domain size M=3.5, number of unit cells is 100. 
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accompany a larger amount lattice deformation. Additional support of the 

antiphase wall model is the work by Kopatzki and Behm [M]. With STM, 

they observed that even at chemisorption stage there are already plenty 

of antiphase walls present between the p(2x2) or c(2x2) domains and the 

average domain sizes are rather small, 2-3 atoms/domain. Therefore, with 

the addition of oxygen these pre-existing walls may well serve to limit 

the size of oxide domains to, e.g., M = 1.75 or 3.5, depends on 

adsorption temperatures. The weakness of the model, as mentioned before, 

is the presence of large numbers of walls, where same type of atoms are 

adjacent and repulsive. Also notice the presence of unexpected (0,2/7) 

and (0,1/7) spots in the simulated spot profiles shown in Fig. 30A and B. 

This can be explained by looking back to eq. (2.3), where the alternation 

occurs by assuming h = odd integer. Actually h can be any non-integer 

number across the Brillouin zone, such as h » 5/7 and 6/7. But in that 

case the phase factor 

(2.7) 

across the antiphase wall will be some imaginary value. It will be 

difficult to show the physical picture of changes in scattering factor 

along the one-dimensional lattice of Fig. 26B in real numbers. The phase 

factor in eq. (2.7) will be real only when h is integer, and therefore, 

Fig. 29A results. For the points in reciprocal space where h equals to 

non-integer but close to 1, such as 5/7 and 6/7, we approximate them to 

1, so that the step function of Fig. 29A still prevails, and we obtain 

the profiles of Fig. 30 correctly for 0.5 < Ak/27r < 1. For the part with 

0 < Ak/2% <0.5, since h has to be approximated to 0 rather than 1, eq. 
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Figure 31. Real space structures of (7x7) with anti-phase wall 

periodicity (A) H=1.75, (B) M=3.5. 
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(2.7) results phase factor » +1, where no step function exist. 

Therefore, no split is expected for 0 < h < 0.5 in the first Brillouin 

zone. In another word, in Fig. 30, only the part of profiles with 0.5 < 

h 5 1 should be used to compare with experimental results. The part with 

0 < h < 0.5 should be ignored. 

The Diffuse Local Background The 7th order spots always overlap 

with a relatively high background, which, if considered as a diffraction 

spot, is broad in size and weaker in intensity than the true NiO(lOO) 

diffraction spots. Other researchers have previously recognized it as 

the indication of the existence of NiO(lOO) domains, although we have 

shown in Chapter 1 that the (7x7) is the dominant phase at 300-400 K 

temperature range. However, if we look at those fractional spots 

profiles in Fig. 20 more carefully, the following facts can be noticed. 

First, it is obvious that the high background does not show obvious 

increase in its intensity as the adsorption temperature goes from 350 K 

to 400 K, as shown in Figure 20. Rather it is more intense at 350 K than 

at 400 K. This does not support the proposition that the high background 

is from the diffraction of NiO(lOO) domains. Because as we have 

concluded in Chapter 1, higher adsorption temperature should favor the 

formation of thermally-activated phase NiO(lOO). There should be more 

and bigger NiO(lOO) domains forming at 400 K than at 350 K, and higher 

background intensity would be observed at high adsorption temperatures. 

But our observation is opposite to this. Second, the behavior of (0,5/7) 

and (0,6/7) spots intensity during annealing (refer to Figure 21) are 
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nearly opposite. It indicates that the high background is not due to the 

simple diffraction of a stable NiO(lOO) lattice that forms at the expense 

of (7x7). If a stable NiO(lOO) lattice does form at the expense of (7x7) 

as temperature increases, then the change in the spot intensities of 

(0,5/7) and (0,6/7) should be more or less synchronous, i.e., increasing 

or decreasing their intensities similarly. We make the following 

speculations here: 

1. The high background is simply due to the overlap of 7th order 

spots. Since the (7x7) pattern formed at 350 K has the (0,5/7) spot 

relatively more intense than others, as shown in Figs. 18A and 20A and B, 

therefore the high background is sitting nearer (0,5/7). The (7x7) 

pattern formed at 400 K has the (0,6/7) spot relatively more intense, 

therefore the high background is more centered on (0,6/7), as shown in 

Figs. 18B and 20C and D. Figure 33 schematically shows the possible • 

deconvolution of two assumed spots profiles. These profiles are by no 

means scaled to the measured intensities of various 7th order spot. They 

only relatively show, for Instance in Fig. 33A, the local background is 

closer to (0,5/7). By assuming Gaussian distribution of the spot 

intensity (Lorenzian distribution or a combination of both will also 

work), and letting the (0,5/7) and (0,6/7) spots only differ in their 

relative Intensity, for instance let the Intensity of (0,5/7) be 1.5 

times higher than the (0,6/7) and 6.7 times higher than (0,1), the 

overlapping of them gives Fig. 33A. By interchanging the intensities of 

(0,5/7) and (0,6/7) Fig. 33B is resulted. Notice there Is no third spot 

present between (0,5/7) and (0,6/7). Similar to the profiles we observed 



www.manaraa.com

Figure 33. Deconvolutlon of 7th order spot profile with (0,5/7), (0,6) 

and (0,1) not equally Intense and without presence of 

background Intensity. Assuming Gaussian intensity 

distribution. 

(A) 2Exp[-5(x-0.5)2]+1.3Exp(-5(x-1.5)2]+0.3Exp[-5(x-2.5)2] 

(B) 1.3Exp[-5(x-0.5)2]+2Exp[-5(x-1.5)2]+0.3Exp[-5(x-2.5)2] 
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experimentally, indeed Fig. 33A has a high background intensity more 

centered on (0,5/7) and Fig. 33B has the high background more centered on 

(0,6/7). Therefore, Fig. 33 indicates the overlapping of two spots with 

different intensities can result in a high background nearer the more 

intense spot. This explanation is consistent with the two stage ( 7 x 7 )  

proposition. At the first stage where (0,5/7) is more intense than 

(0,6/7), the overlap of the two spots results in a local high background 

closer to (0,5/7). At the second stage where (0,5/7) is less intense 

than (0,6/7), the high background is centered on (0,6/7). On the other 

hand, if we convolute three spots (0,5/7), (0,6/7) and the assumed 

coexisting NiOflOO) Fig. 34 can result. In Fig. 34, same intensity is 

used for (0,5/7) and (0,6/7), so that the high background is only 

contributed by the presence of the assumed coexisting NiO(lOO). It can 

be shown in Fig. 34A and B, only by varying the location of NiO(lOO) 

diffraction spot between (0,5/7) and (0,6/7), can two type of profiles be 

resulted, i.e., one profile with the high background closer to (0,5/7), 

the other closer to (0,6/7). However, this means the coexisting NiO has 

different lattice constant when formed at different adsorption 

temperatures. This is unlikely, unless NiO(lOO) has lateral thermal 

contractions, i.e., lattice unit cell is smaller at 400 K than at 350 K 

so that the NiO(lOO) diffraction spot moves toward (0,6/7), which is 

almost impossible, 

2. The opposite behavior of (0,6/7) and (0,5/7) during annealing, 

as shown in Fig. 22, is due to transition of the first stage (7x7) 

pattern to the second stage (7x7). Refer to Figure 18 for the observed 
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Figure 34. Convolution of (0,5/7),(0,6/7) and a background, presumbly 

from NIO(IOO), with (0,5/7) and (0,6/7) equally intense and 

superposed with NiO(lOO) spot. By moving the NiO(lOO) 

spot to get the higher background centered on either (0,5/7) 

or (0,6/7). 

(A) Exp{-[x-0.5]Vo.3)+l/3Exp{-[x-1.0]V4)+Exp(-[x-2.5]Vo.3} 

(B) Exp{-[x-0.5]V0.3}+l/3Exp{-[x-2.0]V4)+Exp(-[x-2.5]V0.3) 
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two stages of (7x7) pattern. In region A of Fig. 22 the (0,5/7) fades 

and (0,6/7) intensifies. That indicates the second stage (7x7) forms at 

the expenses of first stage (7x7). Refer to the slight intensification 

of (0,6/7) spot during annealing in Fig. 23B marked by open arrows and 

region a of Fig. 22. In region B (0,6/7) is replaced by the broad spot 

of NiO(lOO) located between (0,5/7) and (0,6/7), refer to Fig. 23 of 

profiles corresponding to temperature above 600 K. This is the stage 

where NiO(lOO) forms at the expense of second stage (7x7). At 

temperatures above 640 K, NiO(lOO) is the only stable oxide phase 

remaining. The second stage (7x7) is thermodynamically more stable than 

the first stage (7x7) and kinetically more difficult to form. Therefore 

it might be proper to say that the first stage (7x7) forms at 

temperatures below 400 K and second stage (7x7) forms momentarily at 

temperatures above 500 K during heating process. At the intermediate 

temperatures, both first and second stage (7x7) structures can exist 

depending on their original adsorption condition. If adsorption is done 

at a lower (e.g., 350 K) temperature, there will be mainly domains of 

first stage (7x7) and this structure persists until the surface is heated 

to 500 K. The (7x7) pattern (profiles) show mainly the first stage 

character in this case. On the other hand, if adsorption is done at a 

higher (e.g., 400 K) temperature, a mixture of both first and second 

stage domains exists. NiO(lOO) is the most stable face of nickel oxide, 

but its formation is a thermally-activated slow process. The formation 

of NiO(lOO) will make the (7x7) patterns difficult to resolve. That is 

why we have to limit the adsorption temperatures below 400 K in studying 
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the two (7x7) patterns. 

Discussion 

We propose that the (7x7) structure of nickel oxide consists of 

highly correlated anti-phase walls within the larger unit mesh, p(7x7). 

The existence of two kinds of (7x7) patterns are due to different 

arrangement of anti-phase walls formed under different oxidation 

conditions. The first stage (7x7) has average periodicity of anti-phase 

walls M-1.75 of the Ni(100) unit cell, or 1.5 of the strained NiO(lOO) 

unit cell. The second stage (7x7) has M-3.5 of NI(IOO) unit cell, or 3.0 

of the oxide unit cell. The former forms at lower temperatures and the 

latter forms at higher temperatures. The transition from first stage 

(7x7) to the second stage (7x7) occurs at temperatures above 500 K during 

continuous annealing process. When temperature is high enough (above 

-570 K), the NiO(lOO) domain start to develop, and by 640 K the only 

stable phase is NiO(lOO). Discussion on the (7x7) structure can be 

concentrated on four points. 

The (7x7) Patterns And Their Real Space Structures This study 

agrees with Saiki et al. on the point that there Is a 1.5% contraction in 

the (7x7) structure from regular NiO(lOO) [33]- Because the (7x7) 

pattern reported by Saiki et al. was obtained from room temperature 

adsorption, which is the condition that first stage (7x7) is supposed to 

form and shows eight fractional spot near (0,1). However, the reported 

(7x7) pattern (refer to Fig. 17) has only four 7th order spots around the 
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substrate Integral spot rather than eight. That Is perhaps because the 

fractional spots (±1/7,5/7) are not fully developed yet at room 

temperature, as shown in Fig. 20, the most observable (7x7) pattern forms 

at -350 K. Other conditions result in poorly resolved 7th order spots. 

The (±1/7,5/7) are usually weaker than other spot even when they are 

observable. That is why Saiki et al. reported a (7x7) pattern which is 

more like the second stage (7x7) rather than the first stage (7x7). The 

real space (7x7) structure proposed by Saiki et al. is based on 

incomplete experimental results and simple geometrical calculation. 

Their model has uniform NIG unit cells within (7x7) unit mesh, while ours 

has anti-phase walls break the uniform NiO lattice. This anti-phase wall 

model has been used in explaining the spots splitting of bimetallic 

systems such as CUjPd, CuAu and Ag^Mg [5&]. The only assumption made in 

the derivation of this kinematic model is the regularity of the walls and 

uniformity of the NiO lattice between walls. This requirement is relaxed 

experimentally, and the sharpness of the splltted spots is reduced and 

less resolved (7x7) pattern is what we actually observed. 

The Energetic Factors Associated With The Formation Of (7x7) As 

we have shown In Fig. 31, although there Is only one to three NiO unit 

cells between two neighbor walls, but the repeating unit parallel to the 

plane of the surface is in registry with every seventh Ni(100) unit cell. 

The partial registry of overlayer to substrate reduces the system total 

energy, relative to the formation of NiO(lOO). The presence of large 

number of anti-phase walls is perhaps also due to the huge strain and 

activation barrier accompanying the formation of mismatched NIO unit 
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cells. Actually, in the recent study by Kopatzki and Behm with STM and 

theoretical simulations, they found that the oxygen island size, 

corresponding to the p(2x2) and c(2x2) superstructures, are already 

rather small [56], -three oxygen atoms per domain. On one hand, the 

presence of large numbers of anti-phase walls may be energetically 

unfavored, considering the repulsive interaction of 0-0 and Ni-Ni at the 

wall region. On the other hand, the partial registry of oxide layer with 

the substrate reduces the overall energy barrier associated with the 

formation of this peculiar structure, and the walls may serve to release 

the strain present at the metal-metal oxide Interface. LEED pattern 

similar to this has also been observed on 0/Ni(110) by May and Germer 

[4Z]. The pattern with fractional spots formed prior to complete 

oxidation to NiO(IOO) was assigned to a (9x4) pseudo-oxide, and the 

satellite fractional spots were attributed to multiple scattering effect 

without any quantitative explanation. If we take a close look at the 

LEED pattern presented In the paper (Figure 2), as shown in Fig. 35A with 

the integral spots (1,0) and (0,1) marked by arrows, we can see the 

(0,8/9) spot is much weaker than (0,7/9) and (0,1) (Miller indices are 

referred to the substrate), and the (5/4,0) spot is much weaker than 

(1,0) and (5/4,±1/9) spots. According to multiple scattering theory 

[48], the (0,8/9) and (5/4,0) spots are primary diffraction spot of 

overlayer NIG, which should be much more Intense than the higher order 

spots such as (5/4,±1/9), (0,7/9) etc., which are due to double- or 

triple-diffraction process and are supposed to be considerably less 

Intense. The LEED pattern shown in the paper contradicts this. 
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Figure 35. The observed and schematic {9x4)-0/Ni{110) patterns. After 

May and Germer [46]• 

(A) Photo of the {9x4)-0/Ni(110). 

(B) Schematics of the LEED pattern in (A). 
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Therefore, it seems improper to attribute these satellite spots to 

multiple scattering effect. However if we adopt the anti-phase wall 

structure to the 0/Ni(110) system and let the anti-phase wall periodicity 

along [100] to be 2 and along [110] to be 2.25, we get spot profile along 

the 9th order fractional spots as shown in Fig. 36A and along the 4th 

order spot as shown in Fig. 36B. In Fig. 36A, the anti-phase wall model 

predicts the 9th order spot (0,7/9) is more intense than (0,8/9). The 

observed intense spot (0,1) is probably due to contribution from 

substrate Ni(110). Again the "extra" spot (0,2/9) in the simulated 

profile can be ignored because it is located at h < 0.5 in the first 

Brillouin zone. The (0,8/9) spot is -1/36 of (0,7/9) spot. We do not 

have quantitative intensity of (0,7/9) and (0,8/9) to compare with the 

prediction, but the (0,8/9) is indeed considerably less intense than 

(0,7/9) by visual observation of the photo. In Fig. 36B, the (3/4,0) and 

(5/4,0), etc., are predicted to be intense by the model. But in the 

photo presented in the paper, only (5/4,0) is intense. The prediction 

along [100] is not as good as along [110]. Perhaps it is because of the 

anisotropy of Ni(110) surface so that the antiphase wall structure 

prevails in one direction, not the other. The observed (1,0) and (0,1) 

spots are again perhaps contributed by uncovered substrate Ni(110). This 

proposed (9x4) structure, by May and Germer, [47] has recently been 

observed by STM study of Ritter and Behm [57]. The oxide overlayer, 

indeed, contracted by -5% from regular NiO(lOO) structure to conform to 

the substrate lattice. Therefore, there must be some internal advantages 

about this partially registered oxide overlayer, from the system total 
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Figure 36. Simulations of pseudo-(9x4) pattern of 0/Ni(110), see 

reference Ifi. 

(A) Fractional spots profile of the 9th order spots with 

M-2.25, number of unit cells assumed to be 100. 

(B) Fractional spot profile of the 4th order spots with 

M=2.0, number of unit cells assumed to be 100. 
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energy point of view. This point will be further discussed at the end of 

this dissertation. Note, the predicted (3/4,0) is not experimentally 

observed. We do not know how to explain this extra spot yet at this 

time. 

Phvsical Possibility Of Transition From First To Second Stage (7x7) 

During transition from first to second stage (7x7), about half of the 

anti-phase walls have to be eliminated, refer to Fig. 31 for the 

different distributions of anti-phase walls when M=1.75 and 3.5. 

Therefore massive atomic rearrangement must occur. Although we do not 

possess strong evidence to show how this rearrangement actually proceed, 

however, high diffusion mobility has been reported for Ni in the nickel 

oxide [5g]. It is possible that once the Ni atoms, gained enough thermal 

energy during annealing, they will leave their positions near the walls, 

where strain due to lattice mismatch and repulsion from adjacent Ni atoms 

exist. Then, the massive rearrangement will follow this initiative. 

Summary 

In this chapter, possible models that might explain our observation 

of the (7x7) pattern are presented and compared. We find the multiple 

scattering theory and overlayer modulation model that are usually used in 

explaining satellite spots of LEED patterns can not interpret the data. 

However the anti-phase wall model simulates the observed two kinds of 

(7x7) spot profiles both in the spot location and in relative intensity 

of various 7th order spots. 
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The local high background superimposed on (7x7), refer to Fig. 4D 

and E, is interpreted as due to overlap of various 7th order spots rather 

than coexisting NiO(lOO) domains. 

Finally, the study on 0/Ni{110) together with this study seems 

indicate that although NIO(IOO) is the most stable phase of N10 on 

surface, but its formation has to be via some intermediate state, where 

oxide overlayer can be partially in registry with the substrate. Once 

the intermediate state (which is similar to NiO(lOO) but contracted 

slightly, -1.5% in the case of 0/N1(100) and -5% in the case of 0/Ni(110) 

is organized and settled to a certain domain structure, further annealing 

of this Intermediate state (or more thermal energy gained by the lattice 

at the intermediate state) will result in destruction of the contracted 

NiO(lOO) and formation of regular NiO(lOO). 
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CHAPTER 3: EVIDENCE FROM AES AND I-V MEASUREMENT 

Results 

As we have reported in Chapters 1 and 2, two different nickel 

oxide epitaxies have been observed with LEED when oxygen is adsorbed on 

Ni(100) at substrate temperatures above and below 300 K, denoted 

NiO(lll) and (7x7)-0 respectively. In this chapter, AES measurements of 

adsorbed and/or thermally treated surfaces are presented to show that AES 

may be sensitive to differences in surface orientations. AES as a 

surface study tool can not only answer what elements and how much of each 

element is present, but also answer to what other atoms is an atom of a 

given element bonded and how is a given element bonded to other element. 

By analyzing the energy positions of spectral features and the 

lineshapes, the change of chemical enviroment on the surface can be 

revealed. Chemically induced changes in spectral shape include the 

appearance and disappearance of peaks, changes in widths of lines in the 

spectrum and changes in relative intensities of spectral features. 

The parameters used in our AES measurement are: 2 keV incident 

beam energy, 1 v peak-to-peak modulation amplitude, unless otherwise 

specified, and 0.2 /lA beam current. The I-V curves are measured in 2-3 

eV increments and scanned over an energy range 30-280 ev. Other 

experimental details are given in Chapter 1. Because valence electrons 

are expected to undergo the strongest changes as a result of changes in 
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chemical environment, and these changes will be both in energy levels and 

in density of states (DOS) distributions, thus those Auger signals 

involving valence electrons are expected to reflect chemical 

changes more directly than those that do not. Therefore, the three Auger 

lines with the following Auger identifications are collected in our 

experiments: Ni-LjVV, Ni-LjMgjV and Ni-M^^VV. These are shown in Figs. 

37, 38 and 39, respectively. Auger measurements are conducted on the 

surface that have been treated under different conditions, with varied 

exposure and/or annealing temperature, in order to see the Auger line 

changes as oxidation progresses. We put together each Auger line, from 

different measurements, into one figure for comparison purposes. For 

example Fig. 37 shows eight Ni-LjVV Auger lines from the following 

measurements. Curve A through D correspond to increasing oxygen 

exposures at room temperature. Curve A is from the measurement of a 

clean Ni(100) surface, curve B is taken on the surface exposed to 1.5 L 

oxygen at 300 K, curve C is obtained from the surface with 50 L oxygen 

exposure at 300 K, and curve D is from a surface exposed to 122 L oxygen 

at 300 K where oxides [both NiO(lll) and (7x7)] are developed. Curve E 

through H are measured on the surface that has gone through more 

complicated treatments. Curve E is obtained from a surface annealed to 

442 K for 2 min after 160 L oxygen exposure at 300 K, curve F is from a 

surface with 180 L exposure at 350 K where only the (7x7) is observed 

with LEED, G is measured from a surface with 180 L exposure at 225 K 

where only NiO(lll) is observed with LEED, and H is from the measurement 

of a surface annealed to 500 K after 500 L exposure at 300 K where only 
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Figure 37. Ni-LjVV Auger line. 

(A) For clean Ni(100) measured at 300 K. 

(B) For surface exposed to 1.5 L oxygen at 300 K, measured at 

300 K. 

(C) For surface exposed to 50 L oxygen at 300 K, measured 

at 300 K. 

(D) For surface exposed to 122.0 L oxygen at 300K, measured 

at 300 K. 

(E) For surface annealed to 442 K after exposed to 160.0 L 

oxygen at 300 K, measured at 300 K. 

(F) For surface exposed to 180.0 L oxygen at 350 K, 

measured at 350 K. 

(G) For surface exposed to 180.0 L oxygen at 225 K, 

measured at 225 K. 

(H) For surface annealed long enough at 500 K, after 500 L 

exposure at 300 K. 
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NIO(IOO) and the reappeared c(2x2} are observed with LEED. Therefore 

curve h represents the LjVV line of true NiO(lOO). 

Discussion 

From the results shown in Figures 37, 38 and 39, we can state the 

following observations: First, in the Ni-LjVV lines in Fig. 37 NiO(lll) 

structure shows a large chemical shift, fiE-3+0.5 eV, as shown in curve G. 

However, the Auger measurement of (7x7) resembles that of NIO(IOO), 

both in the llneshape and in peak position (as shown in curves F and H). 

As we know chemical shift in AES are usually due to formation of chemical 

bond (charge transfer), which usually causes a shift of energy of a core 

level. The change in the energy of a core level, in turn, shifts the 

energy of Auger peak involving this core level [53]. Therefore the 

energy shift on NiO(lll), which is not common on (7x7), nor on NiO(lOO), 

reflects that the chemical bonding of Ni-0 in NiO(lll) must be 

distinctive from that of (7x7) and NiO(lOO). Second, in the Ni-L^^%V 

lines of Fig. 38, the known oxide epitaxy NiO(lll) differs from that of 

(7x7) and NiO(lOO), both in peak position and in lineshape as shown by 

comparing curve G with F and H. Because the changes in the peak shape of 

WXY transition usually reflect variations of the electronic states of the 

valence electrons, the large difference in line shape shown in Fig. 38G 

from F and H, and the similarity between F and H, indicate the electronic 

structure of NiO(lll) is different from that of NiO(lOO) or (7x7), while 

the latter two are similar. Third, the Ni-Mg^VV Auger lines in Fig. 39 
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Figure 39. Ni-Mg^VV. Conditions are all the same as in Fig. 37 

for curves with the same label as those in Fig. 37. 
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show that as the dean surface goes through chem1sorption to oxidation, a 

shoulder on the lower energy side develops. It is known that broadening 

of peaks shown in the low energy Auger lines is characteristics of metal 

oxide formation [52], Since this shoulder (broadening) is common to all 

three structures associated with oxidation, NiO(lll), NiO(lOO) and (7x7), 

it evidences that (7x7) is indeed an oxide formed during oxygen 

adsorption. 

The above observations probably indicate that the (7x7) is 

very similar, within the sensitivity of the Auger measurment, to regular 

NiO(lOO) in both the electronic configuration and lattice geometry, while 

NiO(lll) is different. Although analyses of AES results is usually 

difficult, because the valence levels lie in a relatively broad band of 

energy level for which the energy locations and DOS distributions can 

change greatly with chemical change (such as bond formation between 

nickel and oxygen atoms), the large chemical shift shown in NiO(lll) is 

explained in the following. The general trend of down shift of Auger 

energy as oxygen exposure increases is due to the fact that the 

electronegative oxygen pulls electrons away from Ni atoms. The results 

from tight-binding calculation by Mukherjee [60] and Altmann [61] et al. 

show that with Increasing coverage from p(2x2) to c(2x2), the nickel to 

oxygen charge transfer increases from O.Be to l.Oe. Note, in the NiO 

compound, the transferred electronic charge to oxygen amounts to 2.0e. 

The fact that the Auger energy of NiO(lll) shifts down more than that of 

the (7x7) and NiO(lOO) might be explained by the structure differences 

between them. Fig. 40 schematically shows the side and top views of 
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Figure 40. Atomic arrangement of NiO(lll) and NiO(lOO) at the surface 

with top and side views. (A) NiO(lll), (B) NiO(lOO). 
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NiO(lll) epitaxy and the NiO(lOO) structure. In NiO(lll) structure, the 

bulk oxygen atoms have Coordination Number (CN) « 6 with Ni-0 distances 

all the same, 2.9536 A (where 2.9536 A - a//2, a » 4.177 A, lattice 

constant of NiO). But the oxygen atoms terminated at the surface only 

bond to three nearest Ni atoms underneath it. In NiO(lOO) structure, 

oxygen also has CN=6 in the bulk, but Ni-0 distances are 2.9536 A for the 

four coplanar Ni atoms and 2.08 A for the other two Ni atoms, one above 

and one below the oxygen atom (where 2.08 A • a/2, a = lattice constant 

of NiO). The oxygen atoms in the top most layer bond to five nearest Ni 

atoms. In other words, the surface oxygen loses three bonds to nickel in 

NiO(lll), as shown in Fig. 40A, and only one bond in NiO(lOO), as shown 

in Fig. 40B. Therefore, we postulate here, the electron density will be 

pulled more toward oxygen in NiO(lll) than in NiO(lOO) in order to have 

the electron density balanced. 

Also, notice in Figs. 37 and 39 that A, B and C are basically the 

same, indicating that the chemical environment of surface Ni atoms does 

not change much when chemisorption structures p(2x2) and c(2x2) are 

formed, which is consistent with the experimental studies by others with 

LEED [ê£], elastic He scattering [8Û], SEELFS [êl], EELS [64,65], UV and 

XPS [10] and ion backscattering [66], although theoretical studies 

have reported various values of spacing between oxygen adlayer and Ni 

first layer for p(2x2) and c(2x2) structures [67], 

In Fig. 41, Auger lines of Ni-Mg^VV, corresponding to surfaces with 

different annealing history are put together in order to study the 

kinetics of the formation of NiO(lOO). In this figure, curve A is for 
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Figure 41. Ni-MgVV Auger lines of surfaces with different annealing 

history. 

(A) Clean Ni(100). 

(E) Obtained after heated surface to 442 K for 2 min after 

160 L oxygen exposure at 300 K. 

(I) Obtained after briefly annealed surface to 652 K after 

400 L exposure at 400 K. 

(H) Obtained after annealed surface to 500 K for long enough 

after 500 L adsorption at 300 K until NiO(lOO) is the only 

epitaxy observed with LEED. 
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clean Ni, E is obtained after heated surface to 442 K for 2 tnin after 160 

L oxygen exposure at 300 K, I is obtained after briefly annealed surface 

to 652 K after 400 L exposure at 400 K, and H is obtained after annealed 

surface to 500 K for long enough after 500 L adsorption at 300 K until 

NiO(lOO) is the only oxide epitaxy observed on the LEED screen. 

Therefore, curve H is the true oxide Auger line. It appears from both 

the Auger peak positions and the lineshapes that curves E and I are 

convolutions of atomic (curve A) and oxide (curve H) Auger characters, 

assuming the clean Ni(100) gives atomic Auger character and true NiO(lOO) 

gives oxide Auger character. From the results in Chapter 1, we know that 

curve E is measured on the surface with the coexistence of Ni(111) and 

(7x7). Therefore the atomic Auger feature on curve E indicates either 

the NiO layer is not thick enough so that the substrate Ni atoms are 

within the measurable depth of AES, or the NiO forms islands (not uniform 

layers) so that Ni atoms that are not covered by these islands are 

exposed to the AES. The former hypothesis supports the idea that the 

oxide structure saturates with limited thickness. Since the electron 

escaping depth is < 10 A at 50-60 eV for the MgjVV Auger line, the NiO 

must be ^ 2-3 layers thick. The latter suggests either NiO(lll) or 

(7x7) or perhaps both forms oxide island. The uncovered Ni(100) between 

islands contributes to the atomic nickel feature in Fig. 41E. The 

discussion made in Chapter 2, where we attribute the unexpected high 

(0,1) spot intensity in the profiles to the contribution from uncovered 

metallic Ni(100), is consistent with this hypothesis. The increased 

atomic nickel feature on curve I indicates the reappearance of metallic 
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Ni at temperatures above 640 K. This is consistent with the discussion 

in Chapter 1 about the disproportionation of NiO during annealing. The 

less oxygen-rich phase consists of reappeared metallic Ni and p(2x2) or 

c(2x2) structures. 

Second, on curve E in Fig. 41, the remnant atomic Ni feature is due 

to uncovered Ni(100), while the atomic Ni feature on curve I is due to 

reappearance of metallic Ni during annealing. In order to check whether 

this reemerging Ni-MgjVV peak from annealing, at 55.7 eV, is indeed the 

same atomic Ni character as that shown in the clean Ni(100) Auger line of 

curve A, first, we measured the I-V curves of the (1/2,1/2) spot before 

and after annealing (as shown in Fig. 42). The measurement of intensity 

vs. incident electron energy usually reflects the structural information 

of lattice in 3-dimension. Dynematic diffraction information such as the 

multiple scattering effect, inelastic diffraction, etc., occurs in the I-

V spectra as secondary Bragg peaks. Analysis and comparison of measured 

and calculated I-V spectra could result in 3-dimensional structural 

determination. But even from simple comparison of the resemblance of 

measured I-V spectra for the chemisorption structures before and after 

annealing, we should be able to draw some conclusions about the 

similarities and differences of the two structures. It is evident in 

Fig. 42 that no major differences are observed from our measurements for 

the c(2x2) patterns obtained by adsorption and anneal of the adsorbed 

surface. Second, the continued oxygen exposure to the annealed surface 

with either p(2x2) or c(2x2) patterns will bring back the NiO(lll) 

structure again at 300 K and below. These indicate that the reemerging 
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Figure 42. Experimental I-V curves of c(2x2) structure, obtained before 

and after annealing. 

(A) Obtained after adsorption of Og at 300 K with pressure 

3.2x10"® for a total of 14 L, a single phase c(2x2) is 

observed with LEED. Measured at room temperature. 

(B) Obtained after 43 L Og exposure at 200 K and then 

annealed to 662 K, measured at room temperature. 



www.manaraa.com

135 

2000 

1600 -

1200 -

en 
z 
LU 

400 • 

en s 

2000 

1600 -

1200 -

800 -

400 -

160 200 240 260 

ENERGY (EV) 



www.manaraa.com

137 

metallic nickel and c(2x2) or p(2x2) structures are indeed the same as 

clean and chemisorption structures. These post-annealing oxygen atoms 

sit on the surface the same way as before annealing. 

The conclusions we can draw from these AES studies are: 

1. In Chapter 1, from the common distinct shape of AES signal ratio 

vs. exposure curves over 80-400 K, we conclude that the (7x7), together 

with NiO(lll), should be a new nickel oxide phase. From the AES results 

presented in this chapter we can conclude that (7x7) is indeed a nickel 

oxide developed on Ni(100) during adsorption, based on the shoulder which 

appears on the Ni-Mg^VV lines in Figure 39. This shoulder is common to 

NiO(lOO), NiO(lll) and (7x7). 

2. Auger measurements show substantial differences between two 

epitaxies, NiO(lll) and NiO(lOO), and great resemblance in line shape and 

peak positions between (7x7) and NiO(lOO). It indicates that (7x7) must 

have pretty much the same electronic and geometric structures as 

NiO(lOO). The proposed anti-phase wall model for the observed (7x7) has 

somewhat the same lattice unit cell and surface orientation as NiO(lOO) 

except the 1.5% contraction and the large numbers of anti-phase walls. 

3. The hypothesis made in Chapter 1 about the disproportionation of 

NiO layer upon annealing is confirmed here by the reappearing atomic Ni 

feature in the Ni- MjjVV Auger line after annealing. The reappearing Ni 

and p(2x2) or c(2x2) structures have no difference from the clean Ni(100) 

and chemisorption structures as compared by I-V measurement. 



www.manaraa.com

138 

CHAPTER 4: MEASUREMENTS OF DEBYE-WALLER FACTORS OF NiO 

Results 

The interest in finding the Debye-Waller factor and Debye 

temperature is three fold. First, low-energy electron diffraction is 

potentially the primary tool to study surface lattice dynamics. Our 

computer-interfaced video LEED system has not been employed in studying 

this aspect of the surface property. We would like to find out whether 

reasonably good results can be obtained with our equipment. Second, 

there have not been many reports about the surface Debye temperature of 

nickel oxide, although there are determination of the Debye temperature 

of metal nickel surface and that of qualitative estimation of NiO [68]. 

They estimate the Debye temperature of NiO(lOO) must be very high because 

as they heated the oxygen covered Ni(100) surface up to 900 K, the broad 

NiO(lOO) diffraction spots remained intense. Therefore they estimated 

from this qualitative observation that the surface Debye temperature for 

NiO(lOO) is at least 800 K. Third, the surface Debye temperature is an 

important parameter in LEED dynamical calculations [69]. Any future 

structural determination by this method will require a value of the 

surface Debye temperature in order to obtain a successful result. In 

this chapter we quantitatively estimate the Debye-Waller factor and 

surface Debye temperatures of nickel oxide NiO(lll) and NiO(lOO). 

It is well known that there is a fall in the intensity of the beams 
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in an x-ray diffraction experiment (using a bulk single crystal) as the 

crystal temperature is raised. At the same time the intensity in the 

diffuse background of the diffracton pattern becomes higher. The 

simplest explanation of these observations is that the individual atoms 

of the crystal are vibrating independently about their equilibrium 

positions and, as a result, the exact Bragg condition is not met. This 

is because waves which would be scattered coherently from a perfectly 

rigid lattice actually have phase differences fluctuating with time due 

to the motion of the scatterers. The effect of this motion upon the 

intensity of the elastically diffracted beams is described in many solid 

state physics textbooks, e.g., Ashcroft and Mermin, 1976 and Kittel, 

1986. If Ig is the intensity elastically scattered into a beam by a 

rigid lattice, then the temperature dependence of diffraction intensity 

is described kinematically by a factor [53,70]: 

exp[-<s • u>2] (4.1) 

which is a measure of the component of <uf>, the atomic mean square 

displacement, in the direction of s. The exponential factor of eq. (4.1) 

is usually called the Debye-Waller factor and is often written as exp(-

2MT). By using the Debye model of the solid, assuming T»^^ and <u^> is 

proportional to the temperature, we have 

s^<uS= 2MT (4.2) 

Therefore, by plotting In I vs. T in the high temperature limit, the 

slope gives the result of 2M. 

However, previous experimental and theoretical studies on other 

f.c.c. and b.c.c. single crystal surfaces have shown that actually at 
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temperatures below about one-third of the bulk 0^, the linearity of 

Debye-Waller factor in the plot of In I vs. temperature still persists 

r35.71-731. i.e., the requirement of can be relaxed. 

NiO( l l l )  does not show obvious degradation over repeated heating-

cooling cycles if the maximum temperature is kept below 425+25 K. 

Therefore, the heating ramps for NiO(lll) have to be limited to the range 

80-425 K, where 80 K is the lower physical limit because the crystal is 

cooled with liquid nitrogen. This range is relatively narrow, compared 

with typical temperature ranges used for this kind of studies. It will 

be interesting to find out the lowest temperature where the linearity of 

Debye-Waller factor still holds. For the NiO(lOO) phase, the intensity 

vs. temperature is measured in the 80-650 K temperature range. 

Discussions of the possible different ways to measure 2M and their 

sources of error will be presented in this chapter, then measurements of 

diffraction intensity vs. temperature will be presented, and finally 

information about surface and bulk Debye temperature, and the mean square 

amplitude of vibration at the surface will be extracted. 

The fast computer image processing ability of our system allows us 

to integrate spot intensity over a window set around the spot or to 

obtain the intensity profile of a single slice across the spot rapidly 

as temperature changes. A typical heating-cooling cycle takes less than 

20 min. However, the thermal expansion of the lattice during 

heating, can cause intensity change, i.e., spot intensity change measured 

at a fixed energy during a continuous heating may not be only due to 

temperature damping. The in-phase and out of phase diffraction condition 
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changes as temperature due to thermal expansion. The Intensity change 

due to heating is especially obvious in regions where intensity changes 

rapidly with team energy. This can be more easily explained in an 

intensity vs. energy measurement at different temperatures, where the 

maximas in the I-V curve should shift down as temperature increases [74]. 

Therefore It is best to follow the peak as it shifts to determine the 

intensity used in plotting In I vs. T. But it is very time consuming to 

measure the I-V curves over a wide temperature range. Another procedure 

which should be followed Is to measure the spot profile intensities while 

heating so that the constancy of the FWHM, as is required for an analysis 

of temperature dependence In terms of Debye-Waller factor [24]. can be 

checked. 

However, the intensity vs. temperature is measured under, a somewhat 

relaxed condition in this study. It will be interesting to see how 

accurate our results can be, comparing with results of other methods [if 

any]. The I{T) Is measured at a fixed energy and during continuous 

heating. In order to check how the Debye-Waller factor fluctuates as 

energy, we measure I(T) at six different energies over the range 57-155 

ev. To avoid the effect of island ordering and disordering during 

heating, the sample is heated to a high temperature before data are 

taken. Presumably, as long as the heatings thereafter do not go beyond 

that upper limit temperature, the intensity changes during the heatings, 

following the first one, should be predominantly due to the Debye-Waller 

effect, and intensity should be reversible as the sample is heated and 

cooled, assuming no phase transition or oxygen dissolution in this 
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Figure 43. Typical sequential heating cooling curve and integrated spot 

Intensity changes during heating cooling cycles. 

(A) Obtained from the first heating cooling cycle immediately 

after 32 L oxygen exposure at 200 K, measured at 87 eV. Note 

the x-axIs in this panel is different from all the others. 

(B) Obtained from the second heating cooling cycle after (A), 

measured at 57 eV. 

(C) Obtained from the third heating cooling cycle after (B), 

measured at 127 eV. 

(D) Obtained from the 4th heating cooling cycle after (C), 

measured at 156 eV. 

(E) Obtained from the 5th heating-cooling cycle after (D), 

measured at 107 eV. 

(F) Obtained from the 6th heating-cooling cycle after (E), 

measured at 72 eV. 
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temperature range. Indeed, in Fig. 43 we show the intensity changes 

during sequential heating and cooling cycles at six different beam 

energies. A typical sequential heating-cooling curve, T(t), is also 

shown in this figure. Fig. 43A shows the result from first annealing 

immediately after 32 L oxygen exposure at 200 K. It gives much different 

curve shapes from all the other annealing treatments, as shown in Fig. 

43B, C, D, E and F. As a matter of fact, when attempting to plot In I(T) 

for Fig. 43A, very poor linear regression is obtained from the heating 

part, as shown in Fig. 44A, but if the cooling part curve is put in the 

same graph, a very good linear relationship is obtained, as shown in Fig. 

44B. In Fig. 44A the initial decrease below 180 K is perhaps due to 

massive diffusion of oxygen atoms that have been trapped at some unstable 

adsorption site at low temperature. The increase following that 

indicates that the ordering of NiO(lll) domains is dominant in the 180 K 

to 300 K range. The second decrease starting above 300 K is mainly due 

to the Debye-Waller effect, which is indicated by its overlap with the In 

I(T) during cooling. We also check the reversibility of intensity for 

other heating-cooling cycles to make sure the change in intensity is 

truly a temperature effect, rather than dissolution or phase transition. 

This is shown in Fig. 45, which shows In I{T) of a heat-cool cycle at 127 

eV. The reversibility of intensity is obvious. The temperature 

measurement is through a W-5%Re/W-26%Re thermocouple mounted on the back 

of the Ni(100) sample, output both to a DVM, and an X- Y recorder as the 

integrated LEED spot intensities are recorded simultaneously by computer 

[38]. The temperature accuracy is estimated to be +1 K, based on the DVM 
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Figure 44. Lnl vs. T from the sequential heating cooling 

results of Fig. 43A. 

(A) Ln I(T) from heating process. 

(B) Overlap of In I{T) from both heating and cooling 

process. 
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Figure 45. Showing that good reversibility of I(T) are maintained for 

those heat/cool cycles of Fig. 43. Data shown here reflect 

the I(T) of Fig. 43C, measured at 127 eV. 
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reading which is accurate to ±0.01 mV. The Herz temperature controller 

is used to obtain the linear heating slope [H]. Fig. 46 shows In I(T) 

corresponding to the measurements in Fig. 43 for NiO(lll) epitaxy during 

heating. Fig. 46A through E are put in sequential order as they are 

taken. The heating is only up to 423 K so that no apparent NiO(lOO) 

forms within this temperature range. 

The increasing scatter in In I(T) is obvious, as shown in Fig. 46A 

through E, due to repeated heatings. Slight and gradual degradation of 

NiO(lll) is resulted from repeated heatings. That causes the increase in 

background noise relative to spot intensity. Deviations from constant 

slope occurs at low temperature, which is usually attributed to the zero 

point motion, and at high temperature where the measurements include 

diffuse scattering [35, 75]. The least square curve fittings are a-lso 

shown in the figure. The 2M values obtained from plotting In I(T) are 

listed in Table 1, where we also list results of simultaneous measurement 

on another "ring" spot in order to check the variation of the 2M values. 

In Table 1, the 2M values show fluctuation with energy by a factor 

of 3 and with different spots by a factor of 1.5. It is hard to say 

whether this fluctuation indeed reflects the variation of electron 

penetration depth at different incident beam energy, because electron 

energies around lOOeV ± 50eV have about the same mean free path. 

Therefore it is not conclusive from Table 1 to say that different 

electron penetration depths at different energies cause the variation in 

2M. Also, because the intensity of NiO(lll) after subtracting the 

relatively high background, due to either disordered adsorbate at surface 
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Figure 46. Plot of Inl vs. T for results of Fig. 43B through F. Least 

square curve fittings are also shown in each panel. 
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Table 1. Measured Oebye-Waller factors and surface 
Debye temperatures of NiO(lIl) 

beam 
energy 

2M X 1000 K beam 
energy beam 7 beam 8 beam 7 beam 8 average 

57 eV 1.3310 0.9965 336.0 396.5 366.0 

72 eV 1.3600 1.1912 373.7 399.3 386.0 

87 eV 1.6690 2.5999 370.8 297.1 334.0 

107 eV 1.6386 2.0022 415.1 375.5 395.0 

127 eV 2.2721 1.7985 384.0 431.6 407.0 

156 eV 2.0125 2.9455 452.2 373.8 413.0 

average » 383 ± 29 K 

Table 2. Measured Debye-Waller factors and surface 
Debye temperatures of NiO(lOO) 

beam 
energy 

2M X 1000 K 

64 eV 1.6803 317.0 

72 eV 1.4386 363.3 

average - 340 + 23 K 
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or disorder In the subsurface oxide region, is low and the temperature 

range, over which the sample Is heated and cooled, is narrow, the drawing 

of the straight line for In I{T) plot can be less definite, or arbitrary 

In a sense. Therefore the fluctuation of the 2M with energy and the 

spots measured is understandable. Fig. 47A is measured on the surface 

annealed to 574 K after exposed to 6 L at 130 K. Fig. 47B is obtained on 

the surface annealed to 607 K after exposed to 175 L oxygen at 225 K. 

The good linearity down to -150 K is obvious in Fig. 47. The measured 

Debye-Waller factors for NIO(IOO) are listed in Table 2. The difference 

between NiO(lll) and NIO(IOO) in 2M results are within the measurement 

scatter. Presumably because Debye-Waller effect is due to the lattice 

3-d1mensional, collective motion, it is not so sensitive to the surface 

differences of different epitaxies. 

Another form of eq. (4.1) can be derived which relates the observed 

intensity to other measurable quantities: 

12h: (COS#): j 
I(T) = l(0)exp{ (4.3) 

m kg *,2 

where A is incident wavelength, 

0 Is entrance angle to normal incidence, 

is the Debye temperature of the outermost layers where 

the low energy electrons penetrate, 

h is Planck constant, 

m is atomic weight, 

k is Bolzmann constant. 
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Figure 47. Plot of Inl vs. T measurements on NiO(lOO). 

(A) Obtained from heating of a surface exposed to 6 L oxygen 

at 130 K. 

(B) Obtained from annealing of a surface exposed to 175 L 

oxygen at 225 K. 
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surface Debye temperature Is then obtained. 

Discussion 

The surface Debye temperature of NIO( l l l )  and NIO(IOO) are listed in 

Tables 1 and 2 In the corresponding columns. In Table 1, the maximum 

range of error for the surface Debye temperature on the two spots from 

the two different domains of NIO(lll) Is about +40 K. The averaged 

over 6 measurements, over the 57-156 eV energy range, gives 9^ = 383 K, 

with standard deviation 29 K. The variation In measured 9^ more or less 

reflects the differences In electron penetration depth at different 

energy. Lower electron energy samples the outer layers, which usually 

have larger vibration amplitude. Therefore the Debye temperature is 

lower, i.e., the temperature damping on the spot intensity is stronger. 

It is known that the mean square displacement of lattice points is 

related to the Debye temperature in the form [76,27]: 

3 N h: IT 

where 

N=Avogadro's constant 

h=Planck's constant 

T=absolute temperature 

m-atomic mass 

kg-Boltzmann's constant 
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*o-the effective Debye temperature 

By using a nearest neighbor central force model for fee metals, 

Wall is et al. have predicted the mean square displacement normal to the 

surface is twice the value of the bulk mean square displacement [H]. 

Experiments also show that of the surface is at least twice as large as 

that of bulk [2S]. Therefore the bulk Debye temperature of NiO should be 

^D(buik) - V2 - 383/2 - 542 K 

The surface mean square displacement at room temperature according 

to eq. (4.4): 

<uSgurf • 3.08 X 10"'® cm^ or = 0.176 A 

and that of bulk is therefore 

<u^>buik = 1.54 X 10"''® cm^ or <u^>^^^buik = 0.124 A 

In summary, first, good linearity is preserved in temperatures 

extending down to at least 1/2 below when plotting Inl vs. T. 

That means the high temperature limit (T»^p) requirement can be relaxed 

when using the linearity of Oebye-Waller factor to obtain Second, 

the results from our measurements conducted under a less strict 

condition (using fixed energies and continuous heating) appears 

reasonable. It promises an easy and fast way of measuring the surface 

Debye temperatures, comparing with those strict, time-consuming 

methods [78]. Third, the average surface and bulk Debye temperature of 

NiO, by averaging over that of NiO(lll) and NiO(lOO), are 383 K and 542 K 

from this study. The reported B^ for NiO of above 800 K seems doubtful. 
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CHAPTER 5: PRESSURE EFFECT ON THE GROWTH OF OXIDE EPITAXIES 

Results 

The effects of oxygen pressure on Ni(100) oxidation can be discussed 

in two respects. One is the effect on the epitaxial orientation of the 

growing NiO on Ni(100). The other is the effect on the growth rate and 

thickness of the oxide. Other authers have expressed the belief that the 

orientation of NiO which grows on Ni(100) depends on the oxygen pressure 

[2]. In order to test this hypothesis, we repeat some of the experiments 

of Figs. 5 and 7 over a range of oxygen pressures. Fig. 48 shows . 

representative results. Curves I, II and III correspond to results from 

three independent measurement at pressure 7x10"', 6x10'® and 5x10'^ torr. 

In each measurement, the (0,1), (1/2,1/2), (0,1/2) and "ring" spots are 

monitored simultaneously. It can be seen that the intensities of the 

diffraction features do, indeed, vary with oxygen pressure, higher 

pressures leading to fainter patterns. However, the nature of the 

patterns formed, and the exposures at which they intensify or diminish, 

are independent of the oxygen pressure. These and other data indicate 

that oxygen pressure has no bearing on the orientation of NiO which grows 

during oxidation, nor the exposure at which the oxide forms, at least 

within the pressure range 10"' to 10'^ torr. Rather, sample temperature 

is the sole determining factor within this pressure range. This is true 

for the formation of NiO(lll) at 300 K or below, and also true for the 
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Figure 48. Integrated spot intensity vs. exposure are measured at three 

different oxygen pressures. Curve I, II and III correspond 

to 7x10*' torr, 6x10"® torr and 5x10*^ torr. 
i 

(A) Obtained by monitoring the intensity change as exposure 

on (0,1) spot. 

(B) Obtained by monitoring the intensity change as exposure 

on (1/2,1/2) spot. 

(C) Obtained by monitoring the intensity change as exposure 

on (0,1/2) spot. 

(D) Obtained by monitoring the intensity change as exposure 

on the "ring" spot. 
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formation of (7x7) structure at above 300 K. 

Discussion 

The pressure effect on spot Intensity is a kinetic effect. As 

pressure increases from 10"' to 10'® torr, the intensity is not reduced 

much. But as pressure goes to 10*^ torr, intensity drops sharply and the 

(0,1) spot intensity shows monotonical decrease rather than an initial 

increase then start to decrease after reaching a maxima as these shown in 

curves I and II of Fig. 48A. These two types of intensity changes with 

different oxygen pressure indicate that the former corresponds to the 

situation where the gas particle Impinging rate is so high that there is 

no time for the adsorbate to form ordered overlayer and result in the 

initial intensity increase of (0,1). Oxidation starts once the coverage 

(exposure) reaches what is needed for oxide formation. On the other 

hand, the latter corresponds to the situation where adsorbate forms 

ordered overlayer, p(2x2) or c(2x2), so that the intensity of (0,1) spot 

is a superposition of substrate integral spot and higher order p(2x2) or 

c(2x2) spot intensities during initial chemisorption stage. In this 

sense, the oxygen pressure does have effect on the oxide growth. But 

whichever oxide epitaxy that grows on Ni(100) at a given adsorption 

temperature is independent of the oxygen pressure. Adsorption 

temperature is the sole factor in determining the orientation of oxide 

epitaxies that grows on Ni(100) during oxidation. 
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SUMMARY OF THE OXIDATION MECHANISM OF Ni(100) 

We believe that significant contributions have been made to the 

understanding of nickel oxidation mechanism. Three oxide structures, 

NiO(lll), (7x7) and NiO(lOO) can grow on Ni(100) during oxidation, 

depending on the adsorption temperature. NiO(lll) is the low temperature 

epitaxy, NiO(lOO) is the high temperature epitaxy and (7x7) structure 

forms at intermediate temperature. 

It probably can be speculated that the energy barrier associated 

with the formation of NiO(lll) is low. Others have expressed that those 

metal oxidation processes occurring below room temperatures must be 

associated with essentially zero energy barriers [5S]. NiO(lll) forms at 

the lowest adsorption temperature among the three oxide structures. It 

can be explained by the fact that Ni layers in NiO(lll) are still 

parallel to the Ni(100) surface so that the formation of NiO(lll) need 

only to insert oxygen between Ni layers without intra-layer bond 

breaking, as shown in Figs. 15 and 16. The energy needed for the 

rearrangement of Ni atoms within the Ni layer (as shown in Fig. 15) is 

perhaps compensated by the energy released from chemisorption. The heat 

of chemisorption is approximately equal to the heat of formation of the 

most stable oxide [77,78], which is 107 K cal/mole for NiO [79]. The 

(7x7) is similar in its orientation to NiO(lOO), but has 1.5% lattice 

contraction and regulated anti-phase walls within the (7x7) unit mesh. 

NiO(lOO) is the most stable face due to its structure of coplannar 

positive and negative ions. But the energy barriers associated with the 
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formation of both structures are perhaps high. Therefore the (7x7) as an 

intermediate state forms under the slightly mild condition, i.e., its 

formation associates with a slightly lower energy barrier than that of 

NiO(lOO). This can be depicted in the energy diagram below. 

In Fig. 49, start with the chemisorbed Ni(100) at point A, to the 

right, by passing an energy barrier Eg and forming a perhaps highly 

unstable state B, the final state NIO(IOO) can be formed. However, state 

B is such an energetically unfavorable structure that is much higher 

than Ejj, which corresponds to the formation of the (7x7) structure. 

Because of the partial registry of oxide overlayer with the substrate 

Ni(100) in this structure, the total energy of the structure is lowered. 

It becomes an intermediate state on the way to the most stable face 

NiO(lOO). The study on 0/Ni(110) seems also to indicate that although 

NIO(IOO) is the most stable face of NIC, but the formation of this 

structure has to be via other intermediate structure, called Ni-(9x4)0 or 

pseudo nickel oxide [47], which is the NiO(lOO) contracted by -5% in both 

directions to conform to the substrate lattice. This partial registry of 

oxide overlayer to Ni(110) has been observed by STM recently [57]. 
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Figure 49. Depiction of energy diagram of the formation of NiO(lOO) and 

the (7x7) structures. 

1 



www.manaraa.com

164 

APPENDIX 1: DERIVATION OF THE SCATTERING FACTOR OF THE 

DISTORTED OVERLAYER UNIT CELL 

Overlaver displacement modulation model: 

The scattering factor, including the diffraction from the (7x7) unit 

of the distorted overlayer, is: 

F(hk) = fj exp -2rri(hXj + kyj + ^ % 
j-i A 

where 0 • angle in^out; h and k are fractional-order Miller indices; Xj and 

yj = coordinate relative to substrate, where Xj, yj runs in steps of 7/6 from 

7/6 to 6; or Xj = 7/6 Ç where f » 1 ... 6, yj - 7/6 7, where 7 » 1 ... 6. The 

atomic displacement in z-direction varies in a periodic way. 

Zj = a . cos (2jr/7 Xj) 

where a = amplitude of displacement relative to a planar substrate 

configuration. Therefore 

F-f Y. Z Çjh + Zyjk + lîE2Eîa-cos(^zi,)] 
j=1 f=l 00 Y o 

= [i + exp(-i2rr2k) + exp(-i27r^k) + . . .  + exp(-i27r^k) ] 

Z ®*P -i2Jr[Z$j.h + llyHÊ a • cos(3l (,)] 

For a = 0 

F will be zero unless: 



www.manaraa.com

165 

2 h = m, integer 
6 

primary fractional diffraction spots are: 

7 -k = n, integer 
6 

then F = 36 ffl = Ffl 

For a f 0 

We have: 

F = f 21 ®XP -i27r[2Çj h + 0 + a' cos(^Çj) ] 
j«1 Y ' 6 

+ exp -i2jr [ 'Çjh + |k + a - cos(^€j) ] 
j.1 O O A o 

+ exp -i27r[Z Sjh + Mk + • a • cos(^ Ç..) ] 
jsl o o A G 

Z ®xp -i27r[Z (jh + ̂ k + • a • cos(^ Çj)] 

+ E ®*P -i27r[Z (jh + ̂ k + • a • cos(^ f,)] 
j o o A 6 ' 

+ 53 exp-i27r[2 Çjh + ̂ k + • a • cos(^ g,)] 
jal o o A 6 ^ 

= f[l + exp(-i27rlin) + exp(-i27r^m) + exp(-i27r^m) + exp(-i27r 



www.manaraa.com

166 

+ exp(-i27r^in) ] J] exp -i2ir[l (jh + • a • cos(^ g 

let 4- = l+c*se a 
2ir X 

expand: 

exp[-ifcos ̂  Çj]= 1 - i/3cos(^ (,) + i #2 cos^ if g, + .. 
o o 2 o ' 

take the first-order term above, then: 

6 
Ê exp[-i ̂  7$jh](-i/3 cos ̂  (j) 

j-1 ^ 

6 c e 
= -i/^X exp[-i27r _J (7h + 1) ] + exp[-i2n_J! (7h - l) ] 

j=i ° ° 

F/ Fi­

let F, = F/ + F/ 

will be zero unless ̂  (7h ± 1) = n 
6 

or h = 
7 

These are the second-order fractional spots. 

Similarly, take the 2nd-order term in the expansion 
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Z exp[-i ̂  7(jh] (i iS2, cos2(^ (j) , 
H ® 2 6 

= % Z exp[-i^ 7(jh]+ ̂  j; exp[-i^ (j (7h + 2) ] + exp[-i^ 
* j.i ® ^ j-1 ® S-. ® 

\ \— 

F„ "2 

where cos^^ Ç, = 

p Sj (7h - 2,y 

" l+COs4^ S| ^2 
6 'i " 

2 2ir " fi ""J 

let Fg = F/ +F2-

Fg will be zero unless 

h (7h ± 2) = n orh = ^ 
6 7 

The scattering factor of the (7x7) unit cell is 

F = 2Fo + F, fFg 

locations of the primary, first-order, second-order spots are: 

primary: h = , k = m,n are integers. 

Ist-order h = .ËEÉi , k = 6n±l 
7 ' 7 

2nd-order h = , k = ^"±2 
7 7 

Estimation of the intensity of fractional spots: 

since /3 = a - • 27r 

where a typically ~ 0.1 A 
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COS0 varies from 0 to 1 

For A. = 
N 

150 
46ev 

= 1.81 A 

(46 eV is the incident electron energy used for the fractional spots measurement) 

typically ̂  =' 0.346 - 0.69 

if primary spot intensity a F,^ 0 

2 c 2 _ 1 <10/ AQM r 2 then first-order Intensity a F/ » 12% 48% Fq 

second-order Intensity a )3^/16 F^^ - 0.09% - 1.4% Fg^ 
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APPENDIX 2: DERIVATION OF THE KINEMATIC DIFFRACTION INTENSITY 

The diffraction intensity in 2-dimension can be expressed as: 

*1-1 Ng-I 

l(hk) = I j j f . f^(n2) • exp{27ri{n,h + njk)}!^' 
ni=0 02=0 

where 

therefore 

Mi-1 *2-1 
l(hk) = I j exp(2%in,h)|: |j f„(n2) expCZ^ringk) 

ni=0 n2=0 

where 

I =xp(2,,n>)|= = |l^!ÎEi!!m| = 
l-exp(2itih) ' 

I exp[-«riNih] (exp[-^iN,h] - exp[%iNih])j2 

exp[irih] (exp[-%ih] - exp[%ih]) 

sin^ ïïN^h 

sin^ ffh 
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Therefore 

l(hk) - f". f IE exp(2%1n2k)P 
sin'^jih na-o 

It is the factor 

*2-1 
F - Ë Ungi.expfZningk) 

"2-0 

that gives split of spots in the k-direction. 
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APPENDIX 3; DERIVATION OF THE KINEMATIC DIFFRACTION 

FACTOR IN ANTIPHASE WALL MODEL 

The factor in Appendix 2 that gives split along k-direction in 

reciprocal space can be further simplified here: 

N2-1 
' F = I Y f„(n2) exp(27rin2k) |2 

"2=0 

= 11 ^ sin(^ khz) . exp(2%in2k) 
HgcO ^ in«0 M 

= Y Sin(i!î!i7rn2) exp(27rin2k) I' 
^ m*0 2ni+l ngsQ M 

, N-1 exp(ilJj!iîrn)i-exp-I?!^7rn)i 
2i exp(2,inlc) 

exp[(i!^rtk)m(] -exp[(2k-i!^))inf] ^ 
JT ni=0 2m+l n=0 M M 

1 -exp{i!î!^+2k)7riN 1 - exp(2k-iHll)7riN 
4 I y- 1 M _ M 

7r2 2m+l 1 _ exp(i!!!ll+2k)7ti 1 -exp(2k-.^)9ii 
M M 
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exp(iï^+k)*1N fexpt-n-^+k)tN] -exp[i(i^H-k)itN] 
1 ZM l ZM ZM 

exp[1(iîitk)*] |exp[-1(^+k)îi] - exp[ii|^tk)i] 

exp[t(k-^))tN] fexp[-l(k-i^)«N] - exp[1(k-i^))tN]] 
Z^l V, zn ZM ) j 2 

e*P[Uk-^)«] fexp[-1(k-i|^)i] - exp[t(k-i|i)it]j 

. , , sin ««(k+iUil) 

-?'5 
2M 

, , sin N*(k-i!!^) 
exp l*(k - i^)(N-l) J!!- F 

2N sin .(k-iïl) 
2N 
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